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Department of Mechanical Engineering, University of Bath

Engineering Mathematics S1 ME12002

Problem Sheet 1 — Complex Numbers

Q1.Simplify the following:

(a) j3, (b) j4, (c) j5, (d) j10, (e) j2023, (f) (1 + j)(2 + j), (g) (1 + j)(1 − j),

(h) (2 + j)(1 + 3j) + (2 − j)(1 − 3j), (i) (2 + j)(2 + 3j) − (2 − j)(2 − 3j), (j) 2/(1− j),

(k) (3 + j)/(4 + 3j), (l) (1 + j)2, (m) (1 + j)100.

A1. (a) j3 = −j.

(b) j4 = 1.

(c) j5 = j.

(d) j10 = j6 = j2 = −1, on removing factors of j4 since they are equal to 1.

(e) j2023 = j4×505+3 = (j4)505 × j3 = 1505 × (−j) = −j.

(f) (1 + j)(2 + j) = 2 + j2 + 2j + j = 1 + 3j.

(g) (1 + j)(1 − j) = 1 − j2 + j − j = 2.

(h) (2 + j)(1 + 3j) + (2 − j)(1 − 3j) = [2 + 3j2 + j + 6j] + [2 + 3j2 − j − 6j] = −2.

The answer is real because we are adding complex conjugates.

(i) (2 + j)(2 + 3j) − (2 − j)(2 − 3j) = [4 + 3j2 + 2j + 6j] − [4 + 3j2 − 2j − 6j] = 16j.

The answer is purely imaginary because we are subtracting complex conjugates.

(j) 2
1−j

= 2(1+j)
(1−j)(1+j)

= 2(1+j)
2

= 1 + j.

(k) 3+j
4+3j

= (3+j)(4−3j)
(4+3j)(4−3j)

= 1
5
(3 − j).

(l) (1 + j)2 = 2j.

(m) (1 + j)100 = (2j)50 = 250j50 = 250(−1)25 = −250 = −1125899906842624.

I doubt if your calculator would be able to compute this number!

Q2.Find (1 +
√
3j)3, and hence find (1 +

√
3j)60.

A2.
(1 +

√
3j)3 = 13 + 3 × (

√
3j) + 3 × (

√
3j)2 + (

√
3j)3

= 1 + 3
√
3j − 9 − 3

√
3j

= −8.

Hence (1 +
√
3j)60 = (−8)20 = 260.

Q3.Find the modulus and argument of each of the following complex numbers, and hence write them in complex

exponential form.

(a) 2 + 3j, (b) −j, (c) 40 + 9j, (d) −5, (e) 1 − 100j, (f) 1 +
√
3j.

A3. (a) 2 + 3j.
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We have r =
√
22 + 32 =

√
13. Hence z =

√
13ejθ where tan θ = 3

2
and 0 < θ < π/2, i.e.

θ = 0.982794.

(b) −j.

We have r = 1 and θ = 3π/2 or −π/2. Hence −j = e3πj/2.

(c) 40 + 9j.

We have r =
√
402 + 92 = 41. Hence z = 41ejθ where tan θ = 9

40
and 0 < θ < π/2, i.e. θ =

0.221314.

(d) −5.

Here, z = 5ejπ or z = 5e−jπ.

(e) 1 − 100j.

We have z =
√
10001ejθ where tan θ = −100 and −1

2
π < θ < 0, i.e. θ = −1.560797.

(f) 1 +
√
3j.

We have r = 2 and tan θ =
√
3, which implies that θ = π/3. Hence (1 +

√
3j) = 2eπj/3.

Q4.Convert the following numbers from complex exponential form to Cartesian form and write in as simple form as

possible.

(a) ejπ/3, (b) 4e2πj/3, (c)
√
2e3πj/4.

A4. (a) ejπ/3.

This is cos 1
3
π + j sin 1

3
π = 1

2
+

√
3

2
j.

(b) 4e2πj/3.

This is 4(cos 2
3
π + j sin 2

3
π) = 4(−1

2
+

√
3

2
j) = −2 + 2

√
3j.

(c)
√
2e3πj/4 = −1 + j.

Q5.Use de Moivre’s theorem to find cos 4θ and sin 4θ in terms of cos θ and sin θ. [Note that cos 4θ may be

written in terms of cosines only or sines only; find both forms.] Also find cos 5θ and sin 5θ in terms of cos θ

and sin θ.

Use your result for sin 5θ to find an analytical expression for sin 36◦.

A5. On using

e4θj =
(

eθj
)4

in Euler’s form,

cos 4θ + j sin 4θ =
(

cos θ + j sin θ
)4

,

the solutions may be found to be,

cos 4θ = 8 cos4 θ − 8 cos2 θ + 1 sin 4θ = 4 sin θ cos θ(1 − 2 sin2 θ),

or

cos 4θ = 8 sin4 θ − 8 sin2 θ + 1 sin 4θ = 4 sin θ cos θ(2 cos2 θ − 1).

For the second part of the question we have,

cos 5θ + j sin 5θ =
(

cos θ + j sin θ
)5

,
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The expansion of the right hand side is,

c5 + 5c4(sj) + 10c3(s)2 + 10c2(sj)3 + 5c(sj)4 + (s)5,

where I have used c and s as shorthand for cos θ and sin θ, respectively. After separating out the real and

imaginary parts we get,

(c5 − 10c3s2 + 5cs4) + j(5c4s − 10c2s3 + s5).

Hence

cos 5θ = cos θ
(

cos4 θ − 10 cos2 θ sin2 θ + 5 sin4 θ
)

and

sin 5θ = sin θ
(

5 cos4 θ − 10 cos2 θ sin2 θ + sin4 θ
)

.

Both sets of terms in the brackets could be tidied further to give expressions solely in terms of cosines or solely

in terms of sines.

We may rewrite the above expression for sin 5θ as,

sin 5θ =
(

16 sin4 θ − 20 sin2 θ + 5
)

sin θ.

If we now set θ = 36◦ then sin 5θ = sin 180◦ = 0. Therefore

16 sin4 θ − 20 sin2 θ + 5 = 0.

This is a quadratic equation for sin2 θ and hence,

sin2 θ =
5 ±

√
5

8
.

Hence,

sin θ = ±

√

5 ±
√
5

8
,

This means that,

sin θ = ±0.587785, ±0.951056.

Of these four choices we have sin 36◦ = 0.587785.

Was that useful? Well, only if you have a 1970s calculator with the square root as its most advanced function!

Yes, I did have one of those....

Q6.Evaluate the following roots of complex numbers:

(a) (5 + 12j)1/2, (b) (−16)1/4, (c) 11/5, (d) (−1)1/100,

(e) (1 + 2j)2/7, (f) (336 + 527j)1/4, (g) (2j)1/2, (h) (−15 + 8j)3/5.

A6. (a) Here 5 + 12j = 13ejθ and 13ej(θ+2π) where tan θ = 12
5

and 0 < θ < 1
2
π, i.e. θ = 1.176005.

Hence (5 + 12j)1/2 =
√
13ejθ/2 or

√
13ej(π+θ/2) =

√
13e0.588003 j or

√
13e3.729595 j .

(b) We write: −16 = 16ejπ, 16ej3π, 16ej5π and 16ej7π.

Note that it is necessary to write −1 in these four different forms because we will be finding the fourth roots.

Now we can take the fourth roots to obtain:

(−16)1/4 = 2ejπ/4, 2ej3π/4, 2ej5π/4 and 2ej7π/4.
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We could write this as,

(−16)1/4 = ±
√
2 ±

√
2j,

where all four sign possibilities are allowed, and given that ejπ/4 = (1 + j)/
√
2.

(c) The solutions are: e0j , ej2π/5, ej4π/5, ej6π/5 and ej8π/5. Note that e0j = 1.

(d) Since −1 = ej(2n+1)π for n = 0, 1, · · · , 99, the solutions take the form ej(2n+1)π/100 for n =

0, 1, . . . , 99.

(e) First multiply out the square: (1+ 2j)2/7 = [(1+ 2j)2]1/7 = [−3+ 4j]1/7 = [5ej(θ+2nπ)]1/7 where

n = 0, 1, 2, · · · , 6, tan θ = −4
3

and 1
2
π < θ < π. Actually θ = 2.2143 radians.

Hence (1 + 2j)2/7 = 51/7ej(θ+2nπ)/7 for n = 0, 1, · · · , 6.

(f) Here, if z = 336 + 527j, then |z| =
√
3362 + 5272 = 625, and arg(z) = 1.0032 radians. Note that

the fourth root of 625 is 5.

Hence

z1/4 = 5e(1.0032+2πn)j/4, for n = 0, 1, 2, 3.

(g) OK, this one appears easier than many of the preceding ones, but this one arises a little more often than

most.

We write 2j = 2e((π/2)+2nπ)j , where n = 0, 1. That is, we have

2j = 2ejπ/2, 2ej5π/2.

Hence,

(2j)1/2 =
√
2ejπ/4,

√
2ej5π/4.

When we substitute in cos(π/4) = sin(π/4) = 1/
√
2, we get,

(2j)1/2 = 1 + j, −1 − j = ±(1 + j).

(h) The modulus of −15+8j is 17, yes, (8, 15, 17) is a Pythagorean triple. The argument is tan−1(−8/15)

which is θ = 2.651635, a second quadrant value. So we write,

−15 + 8j = 17e(θ+2nπ)j for n = 0, 1, 2, 3, 4.

Hence,

(−15 + 8j)3/5 = 173/5e3(θ+2nπ)j/5 for n = 0, 1, 2, 3, 4.

I haven’t sketched any of these final solutions, but it is generally a good idea to do so in order to see where they

lie in the complex plane.

Q7.Solve the following quadratic equations and plot the roots in the Argand diagram (or the complex plane). Find

the modulus and argument of each root, and hence write them in complex exponential form.

(a) x2 + 2 = 0 (b) y2 + 2jy − 2 = 0 (c) z2 + 2
√
2z + 2 − 4j = 0.

A7. (a) This one should be fairly straightforward: x = ±
√
2j. Hence x =

√
2e±πj/2.
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(b) Using the traditional formula for solving quadratic equations we obtain

y =
−2j ± √−4 + 8

2
= −j ± 1.

For the complex exponential form: |y| =
√
2 and arg(y) = 5

4
π or 7

4
π, and therefore the answers are

y =
√
2e

5
4
πj and y =

√
2e

7
4
πj.

Note that these may also be written in the form

y =
√
2e−

3
4
πj and y =

√
2e−

1
4
πj .

(c) Again we obtain

z = −2
√

2±√
8−8+16j
2

= −
√
2 ±

√

(4j) = −
√
2 ± 2

√
j

= −
√
2 ± 2

(

1√
2
+ j 1√

2

)

using the correct values for
√
j

=
√
2[−1 ± (1 + j)] =

√
2(−2 − j) or

√
2 j.

For solutions written in complex exponential form....

For the first root, z =
√
2(−2 − j), |z| =

√
10 and arg(z) = θ where tan θ = 1

2
and π < θ < 3

2
π, i.e.

θ = 3.605240. Hence z =
√
10e3.605240 j . Note that we could also have had θ = −2.677945, which is in

the same direction in the Argand diagram.

For the second root, z =
√
2j, |z| =

√
2 and arg(z) = 1

2
π. Hence z =

√
2ejπ/2.

Sketches for the solutions for these three question parts are given below.

Q8.When sketched in the complex plane, the three complex numbers, z1 = 1+ j, z2 = 3+ j and z3 = 2, clearly

form a right-angled triangle. Multiply each of these numbers by j and sketch the results. How has the original

triangle been transformed? Now multiply z1, z2 and z3 by 1− j; what is the nature of the transformation this

time?

A8. We are given that,

z1 = 1 + j, z2 = 3 + j and z3 = 2.
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These are given as the black points in the Figure below, and the triangle is shaded very lightly simply to emphasize

its shape.

Multiplication by j yields,

jz1 = −1 + j, jz2 = −1 + 3j and jz3 = 2j.

These are included in the flgure as red points.

Finally, if the original points are multiplied by (1 − j) then we obtain,

(1 − j)z1 = 2, (1 − j)z2 = 4 − 2j and (1 − j)z3 = 2 − 2j.

These are depicted in blue.

Re

Im

•

••

• •

•

•

•

•◦

•◦ •◦

So multiplication by j (i.e. by ejπ/2) is equivalent to rotation about the origin by the angle, π/2 (i.e. the black

triangle to the red triangle). This is an anticlockwise rotation without a change in scale.

And mutiplication by (1− j) (i.e. by
√
2e−jπ/4) is equivalent to a rotation of −π/4 and a multiplication by√

2. This is a clockwise rotation and a scaling factor of
√
2.

The yellow triangle is the result of mutiplying all of the points in the grey triangle by e−jπ/4, which may be

seen as a rotation of −π/4 without a change of scale. Then the multiplication of these values by
√
2 yields

the blue triangle.
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The following questions are for interest only and are definitely not examinable. If you are bored, then

do have a go at them!

Q9.de Moivre’s theorem is used to express cosnθ and sinnθ in terms of cos θ and sin θ when n is an integer.

The equivalent for the hyperbolic sine and cosine is not quite as easy to write down. However, write cosh θ in

terms of eθ and e−θ and square both sides of the equation. Hence find cosh 2θ in terms of cosh θ.

Further, can you think of a quick way of determining a simple expression for sinh 2θ in terms of sinh θ and

cosh θ? Also, find an expression for sinh 3θ in terms of powers of sinh θ, and an expression for cosh 3θ in

terms of powers of cosh θ.

A9. We start with the definition of cosh in terms of exponentials,

cosh θ = 1
2
(eθ + e−θ).

Square this to get,
cosh2 θ = 1

4
(eθ + e−θ)2

= 1
4
(e2θ + 2 + e−2θ)

= 1
2
cosh 2θ + 1

2

=⇒ cosh 2θ = 2cosh2 θ − 1.

We start again with,
sinh 2θ = 1

2
(e2θ − e−2θ)

= 1
2
(eθ − e−θ)(eθ + e−θ)

= 2 sinh θ cosh θ.

Here I have noticed that e2θ − e−2θ is the difference of two squares, and therefore I have reduced it the usual

way (i.e. using a2 − b2 = (a − b)(a + b)).

An alternative might have been to say that, given the close similarity between trigonometric results and hyperbolic

results, we should start with sinh θ cosh θ (since sin 2θ = 2 sin θ cos θ), substitute in the definitions of the

two functions in terms of exponentials, and then see what happens. Either of these ways is fine.

Best to begin with,

sinh3 θ =
[

1
2
(eθ − e−θ)

]3

.

This becomes,

sinh3 θ = 1
8

[

e3θ − 3eθ + 3e−θ − e−3θ
]

.

And so,

sinh3 θ = 1
4
sinh 3θ − 3

4
sinh θ.

After rearrangement the final answer is,

sinh 3θ = 4 sinh3 θ + 3 sinh θ.

In a very similar fashion we get,

cosh 3θ = 4 cosh3 θ − 3 cosh θ.
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Q10.Leibniz, he of the invention-of-calculus fame, came late to complex numbers. He found that

√

1 +
√
−3 +

√

1 −
√
−3 =

√
6,

but no-one was surprised! How does one prove this without finding the square roots of complex numbers?

A10. So we may possibly guess at the outset that the two terms on the left hand side are complex conjugates of

one another. Specifically, (1 +
√
3j) and (1 −

√
3j) are conjugates. We can imagine where they are in the

complex plane, and when we take their square roots (assuming that it’s the “positive” ones, then the two main

square roots will be conjugates of one another. Hence the final answer will be real. That’s a good start.

Shall we use the earlier tricks to find the square roots, or is there a better way? Well, we could bludgeon our

way through, but I spotted the 1 and the
√
3 coefficients. These aren’t too far away from 1

2
and 1

2

√
3, which

are the cosine and sine of 60◦ or, better still, π/3.

So,

1 +
√
3 j = 2ejπ/3 and 1 −

√
3 j = 2e−jπ/3.

On taking the respective square roots (where we halve the arguments) we get,

(1 +
√
3 j)1/2 =

√
2 ejπ/6 and (1 −

√
3 j)1/2 =

√
2 e−jπ/6

or

(1 +
√
3 j)1/2 =

√
2 (cos 1

6
π + j sin 1

6
π) and (1 −

√
3 j)1/2 =

√
2 (cos 1

6
π − j sin 1

6
π).

Adding these together means that the imaginary terms cancel, leaving us with,

(1 +
√
3 j)1/2 + (1 −

√
3 j)1/2 = 2

√
2 cos 1

6
π = 2

√
2(

√
3/2) =

√
6.

Yet there is another way of doing this without resorting to complex exponentials, and all that we have to do is

to square the left hand side to find that it is precisely equal to 6. Here we go: let

z =

√

1 +
√
3j +

√

1 −
√
3j.

Hence,

z2 = (1 +
√
3j) + 2

√

(1 +
√
3j)(1 −

√
3j) + (1 −

√
3j)

= 2 + 2
√

(1 + 3)

= 6.

Hence z =
√
6. Yes, one ought to be a tiny bit more careful about some of these plusses and minuses....

Q11. Express z = 1
2
(
√
3 + 1) + 1

2
(
√
3 − 1)j in complex exponential form. Now find the argument in terms of

degrees, and hence find the first integer power of z for which it is a real value.

Answer: Somehow this feels related to the previous questions, but it isn’t.

The modulus of z is given by

|z|2 =
(

√
3 + 1

2

)2

+
(

√
3 − 1

2

)2

= (2 +
√
3) + (2 −

√
3) = 4.
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Hence |z| = 2.

We’ll need to use the calculator to find arg(z):

θ = arg(z) = tan−1
(

√
3 − 1

√
3 + 1

)

= tan−1 0.267949 = 0.261799.

If we convert θ from radians to degrees we get θ = 15◦, precisely. But this is 1/24th of a full 360◦ circle,

and hence

z = 2e2πj/24.

So if we raise this to the 24th power, then

z24 = 224e2πj = 224 = 16777 216.

All of this means that the original real and imaginary parts of z are the cosine and sine of 15◦, and that is what

motivated this question.

Q12.Some very weird ones. Not examinable. You may need to resort to some lateral thinking...

(a) ln(−1), (b) ln j, (c) jj , (d) y = cos−1 2.

A12. (a) ln(−1),

If x + yj = ln(−1), then ex+yj = −1. But we already know that −1 = e(π+2nπ)j for integer values of

n. This leads to

ex+yj = e(π+2nπ)j ⇒ x + yj = (π + 2nπ)j,

and therefore x = 0 and and y = π + 2nπ. So we can say that,

ln(−1) = (π + 2nπ)j n = 0,±1,±2, · · · ,

and we appear to have an infinite number of imaginary numbers which all claim to be ln(−1). That must make

some kind of sense, as the answer couldn’t have been real!

Additional bit: There is the complex numbers Christmas joke:

What is the yule log of −1? Answer: An imaginary mince pi.

This may be expressed in mathematical form by setting n = −1 in the above solution to give,

ln(−1) = j(−π).

(b) ln j,

In like manner, set x + yj = ln j. Hence,

ex+yj = j = e(π/2+2nπ)j , for n = 0,±1,±2, · · · .

And so,

ln(j) = (1
2
π + 2nπ)j n = 0,±1,±2, · · · .

Note that we can use the same methodology to show that

ln(1) = 2nπj n = 0,±1,±2, · · · ,
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where the n = 0 case is the one that we are used to, namely that ln(1) = 0.

(c) jj .

Given that j = e(
1
2
π+2nπ)j , we get

jj =
[

e(
1
2
π+2nπ)j

]j

,

= e(
1
2
π+2nπ)j2

,

= e−(
1
2
π+2nπ),

for n = 0,±1,±2, · · · . Therefore jj yields an infinite set of real values. Strange. . . . . .

The same idea also gives,

1j = e−2nπ for n = 0,±1,±2, · · · ,
which is clearly completely crackers.

(d) y = cos−1 2.

We may take cosines of both sides to get cos y = 2. Given that cos y = 1
2
(ejy + e−jy) we have,

ejy + e−jy = 4.

Multiplying both sides by ejy and rearranging yields a quadratic for ejy:

e2jy − 4ejy + 1 = 0.

By applying the standard formula for the solution of a quadratic (or by completion of the square) we get,

ejy = 2 ±
√
3.

Now let y = a + bj and hence,

ej(a+bj) = e−beja = (2 ±
√
3). (1)

Given our experience with the roots of complex numbers, we may replace equation (1) by,

e−beja = (2 ±
√
3)e2nπj

for integer values of n. Hence a = 2nπ, and e−b = 2±
√
3. The plus/minus here is rather strange, but lets

run with it for a moment to see how this resolves itself.

Now this is not an obvious step, but
1

2 −
√
3

= 2 +
√
3, (2)

which may be proved by multiplying both the numerator and the denominator by 2+
√
3. The above expression

for b is now,
b = − ln(2 ±

√
3)

= − ln(2 +
√
3), − ln(2 −

√
3)

= − ln(2 +
√
3), + ln

(

1

2−
√

3

)

= − ln(2 +
√
3), + ln(2 +

√
3) using (2)

= ± ln(2 +
√
3).
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Hence

y = a + bj = 2nπ ± j ln(2 +
√
3)

for n = 0,±1,±2,±3... is the final answer.

This feels rather strange so perhaps the solution needs to be checked. Therefore

cos y = cos
(

2nπ ± j ln(2 +
√
3)

)

= cos
(

±j ln(2 +
√
3)

)

, (3)

after using the formula for the cosine of a sum of terms.

Given the definition of the cosine in terms of complex exponentials, both the signs in the ± in (3) yield exactly

the same cosine, and therefore we shall select just one of them, the plus. Therefore,

cos y = cos
(

j ln(2 +
√
3)

)

= 1
2

(

ej
2 ln(2+

√
3) + e−j2 ln(2+

√
3)
)

= 1
2

(

eln(2+
√

3) + e− ln(2+
√

3)
)

= 1
2

(

eln(2+
√

3) + eln[(2+
√

3)−1]
)

= 1
2

(

(2 +
√
3) + (2 +

√
3)−1

)

= 1
2

(

(2 +
√
3) + (2 −

√
3)

)

using (2)

= 2.

Q13. Definitely a maths department type of question, but let’s fill up space. A Pythagorean triple is a set of three

integers which satisfy, n2 + m2 = q2. Now if a2 + b2 is such a square, as is c2 + d2, then the product,

(a2 + b2)(c2 + d2) may be written as the sum of the two squares, u2 + v2, in two different ways. I’ve only

just recently discovered this result and my initial reaction was disbelief! Your task is to prove it but I’ll give a

hint or two.

One may factorise (a2+b2) into complex factors (think complex conjugates). This means that (a2+b2)(c2+

d2) may be split into four complex factors. Now there are two different ways of pairing up these factors before

they are multiplied. The rest is up to you.... Test out your result using

(32 + 42)(52 + 122).

A13. The hint goes back to the fact that, when z = x + yj and z̄ = x − yj, then

zz̄ = x2 + y2,

and therefore we may perform the factorisation,

x2 + y2 = (x + yj)(x − yj).

Therefore we have,

(a2 + b2)(c2 + d2) = (a + bj)(a − bj)(c + dj)(c − dj).

If we choose to multiply the 1st and the 3rd factors, and to multiply the 2nd and 4th, then we will obtain,

(a2 + b2)(c2 + d2) = (a + bj)(c + dj) × (a − bj)(c − dj)

=
[

(ac − bd) + (bc + ad)j
]

×
[

(ac − bd) − (bc + ad)j
]

= (ac − bd)2 + (bc + ad)2,
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and this is one sum of squares.

If we now choose to multiply the 1st and the 4th factors, and to multiply the 2nd and 3rd, then we will obtain,

(a2 + b2)(c2 + d2) = (a + bj)(c − dj) × (a − bj)(c + dj)

=
[

(ac + bd) + (bc − ad)j
]

×
[

(ac + bd) − (bc − ad)j
]

= (ac + bd)2 + (bc − ad)2,

which is a different sum of squares. Absolutely astonishing.

So the result is that
(a2 + b2)(c2 + d2) = (ac − bd)2 + (bc + ad)2

= (ac + bd)2 + (bc − ad)2.

If we use the numerical data given in the question, then we may set a = 3, b = 4, c = 5 and d = 12. This

yields the following,

(32 + 42)(52 + 122) = 332 + 562 = 632 + 162 = 4225.


