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Department of Mechanical Engineering, University of Bath

Engineering Mathematics S1 ME12002

Problem Sheet 4 — Integration

1. Find the following integrals:

(a)

∫

x3 dx , (b)

∫

x−5 dx , (c)

∫

e−4t dt , (d)

∫

cosh 2y dy ,

(e)

∫ 1

0

(2x + 3)dx, (f)

∫ 2

−1

(4x2 − 3x) dx, (g)

∫ π/4

0

(2 cosα + sinα) dα.

A1. Just the answers here.

(a)

∫

x3 dx = x4/4 + c.

(b)

∫

x−5 dx = −x−4/4 + c.

(c)

∫

e−4t dt = −e−4t/4 + c.

(d)

∫

cosh 2y dy = 1

2
sinh 2y + c.

(e)

∫ 1

0

(2x+ 3) dx = 4.

(f)

∫ 2

−1

(4x2 − 3x) dx =
[

4

3
x3 − 3

2
x2

]2

−1
= 7.5.

(g)

∫ π/4

0

(2 cosα + sinα) dα =
[

2 sinα − cosα
]π/4

0
= 1 + 1/

√
2.

2. Find the following integrals:

(a)

∫

(x + 3)−2 dx , (b)

∫ 1

0

2xex
2

dx (hint: substitute z = x2),

(c)

∫

1

x2 + a2
dx (hint: substitute x = a tan θ),

(d)

∫ π/2

0

sinx

1 + cos2 x
dx (hint: substitute z = cosx),

(e)

∫

x

1 + x2
dx , (f)

∫

cosx cos(sinx) dx , (g)

∫

θ2 sin(θ3) dθ , (h)

∫ π/2

0

√
sin t cos t dt,

(i)

∫

[

f(x)
]n

f ′(x) dx , (j)

∫

(ff ′′ + f ′f ′) dx (Try to find the integral by inspection),

(k)

∫ 1

0

√

1 − x2 dx, (l)

∫ 1

0

1
√
1 − x2

dx,

(m)

∫ 1

0

(1 + lnx)xx dx [you will need to rewrite xx in an alternative form (hint: take logs), and to assume

that limx→0 x
x = 1].
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A2. With some explanations this time.

(a)

∫

(x + 3)−2 dx = −(x + 3)−1 + c,

(b) I =

∫ 1

0

2xex
2

dx (hint: substitute z = x2).

Let z = x2 and therefore dz = 2xdx. The limits transform as follows: x = 0 =⇒ z = 0 and

x = 1 =⇒ z = 1. So on this occasion, the limits remain the same.

Hence I =

∫ 1

0

ez dz =
[

ez
]1

0
= e − 1.

(c)

∫

1

x2 + a2
.

If we set x = a tan θ, then dx = a sec2 θ dθ. Hence the integral becomes,

∫

a sec2 θ

a2(1 + tan2 θ)
dθ =

∫

1

a
dθ,

because sec2 θ = 1 + tan2 θ. Therefore the integral becomes θ/a + c, or, when written in terms of the

original variable,
tan−1(x/a)

a
+ c.

(d) I =

∫ π/2

0

sinx

1 + cos2 x
dx.

Let z = cos z and therefore dz = − sinx dx. The limits transform as follows: x = 0 =⇒ z = 1 and

x = π/2 =⇒ z = 0.

Hence I =

∫ 0

1

−dz

1 + z2
=

∫ 1

0

dz

1 + z2
=

[

tan−1 z
]1

0
=

π

4
. Here we have used the integral determined in

part (c).

(e) I =

∫

x

1 + x2
dx.

Let z = x2 and therefore dz = 2x dx. Hence

I = 1

2

∫

dz

1 + z
= 1

2
ln |1 + z| + c = 1

2
ln(1 + x2) + c.

Note that I haven’t used the modulus signs in the final answer because (1 + x2) is always positive.

(f)

∫

cosx cos(sinx) dx = sin(sinx) + c using z = sinx.

(g)

∫

θ2 sin(θ3) dθ = −1

3
cos(θ3) + c, using z = θ3.

(h)

∫ π/2

0

√
sin t cos t dt =

∫ 1

0

z1/2dz =
[

2

3
z3/2

]1

0
= 2

3
using z = sin t.
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(i)

∫

[

f(x)
]n

f ′(x) dx = [f(x)]n+1/(n + 1), using y = f(x) as the substitution.

(j)

∫

(ff ′′ + f ′f ′) dx = ff ′ + c. This is a ‘by inspection’ answer. Or...one could notice that the integrand

is the sort of thing that might arise from the differentiation of a product, and then the sleuthing happens...

Note that all indefinite integrals are completed by adding on an arbitrary constant.

(k)

∫ 1

0

√

1 − x2 dx.

Given that sin2 +cos2 = 1, or, more conveniently for the present purpose, that 1 − sin2 = cos2, we’ll let

x = sin θ, and therefore dx = cos θ dθ. The limits transform as follows,

x = 0 ⇒ θ = 0, x = 1 ⇒ θ = 1

2
π.

Hence the integral becomes,

∫ 1

0

√

1 − x2 dx =

∫ π/2

0

√

1 − sin2 θ cos θ dθ

=

∫ π/2

0

cos2 θ dθ

=

∫ π/2

0

1

2
(1 + cos 2θ)dθ

= 1

4
π.

The final integral may be done quickly because the cos 2θ function is to be integrated over half of its period

from θ = 0, and therefore that part of the integral must be zero.

(l)

∫ 1

0

1
√
1 − x2

dx.

This integral may be transformed in the same way as the last one, including the limits. Therefore we have,

∫ 1

0

1
√
1 − x2

dx =

∫ π/2

0

cos θ

cos θ
dθ =

∫ π/2

0

dθ =
[

θ
]π/2

0
= 1

2
π.

(m)

∫ 1

0

(1 + lnx)xx dx.

First, we need to change xx as given in the hint. If we set y = xx and take natural logarithms, then, by the

standard rules of logarithms, we have

ln y = x lnx.

If we now go ‘backwards’ then we get y = ex ln x. Therefore our integral becomes,

∫ 1

0

(1 + lnx)ex ln x dx.

Given that the derivative of x lnx is (1+ lnx), it is clear that we must use the substitution, z = x lnx, and

so dz = (1+ln x)dx. With regard to the limits, when x = 0 then z = 0 [note, it is given that xx = ex lnx
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is equal to 1 when x = 0, and therefore x lnx must be equal to zero. When x = 1, we also find that z = 0.

Therefore the original integral transforms to,
∫ 0

0

ez dz,

which must be zero because we are integrating over a zero-length range.

I agree, this is a very strange result, and is unexpected. It feels as though something has gone wrong somewhere.

In view of this, I have checked the result using numerical methods, and have confirmed that the integral is indeed

zero.

3. Use partial fractions to simplify the integrand in the following integrals, and hence find those integrals:

(a)

∫

2t+ 3

t2 + 3t + 2
dt, (b)

∫

1

t2 + 3t+ 2
dt, (c)

∫

1

t3 + t
dt, (d)

∫

t + 3

t3 + 3t2 + 2t
dt,

(e)

∫

2t + 1

t2(t + 1)
dt, (f)

∫

t2 − 2

(t + 1)(t2 + 2t+ 2)
dt, (g)

∫

1

t(t2 + 1)2
dt.

Please note that parts (f) and (g) are quite lengthy.

A3. A reminder that repeated linear factors are treated in the standard way given in the lectures. An isolated

quadratic factor is treated as a linear term divided by the quadratic factor. A repeated quadratic factor will

involve both of those techniques simulateously.

(a) Let I =

∫

2t+ 3

t2 + 3t + 2
dt. Now let

2t + 3

t2 + 3t+ 2
=

A

t+ 2
+

B

t + 1
.

Putting both fractions over a common denominator yields

2t + 3

t2 + 3t+ 2
=

A(t + 1) + B(t + 2)

t2 + 3t + 2

and so

A(t + 1) + B(t + 2) = 2t+ 3.

The setting of t = −1 and t = −2 yields A = B = 1. Therefore we obtain

I =

∫

[ 1

t + 2
+

1

t+ 1

]

dt = ln |t + 2| + ln |t+ 1| + c = ln |t2 + 3t+ 2|+ c.

Note that this integral is also of the form
∫

(f ′/f) dt, for which the solution is ln |f | + c.

(b) Following the same partial fractions analysis yields B = 1 and A = −1. Therefore

∫

1

t2 + 3t + 2
dt =

∫

[ 1

t+ 1
− 1

t + 2

]

dt = ln |t+ 1| − ln |t+ 2|+ c = ln
∣

∣

∣

t+ 1

t+ 2

∣

∣

∣
+ c.

(c) The integrand may be shown to reduce to

1

t3 + t
=

1

t
− t

t2 + 1
,



ME12002 Engineering Mathematics S1 Sheet 4 Integration 5

and hence
∫

1

t3 + t
dt = ln |t| − 1

2
ln(1 + t2) + c = ln

∣

∣

∣

t
√
1 + t2

∣

∣

∣
+ c.

(d) Let I =

∫

t + 3

t3 + 3t2 + 2t
dt.

The denominator may be factorised to t(t + 1)(t + 2). Therefore let

t + 3

t3 + 3t2 + 2t
=

A

t
+

B

t + 1
+

C

t + 2
,

and hence

t + 3 = A(t + 1)(t + 2) + Bt(t + 2) + Ct(t + 1).

Hence,
t = 0 ⇒ 3 = 2A ⇒ A = 3

2
,

t = −1 ⇒ 2 = −B ⇒ B = −2,

t = −2 ⇒ 1 = 2C ⇒ C = 1

2
.

Therefore

I =

∫

[3/2

t
− 2

t + 1
+

1/2

t + 2

]

dt,

= 3

2
ln |t| − 2 ln |t+ 1| + 1

2
ln |t+ 2|+ c,

= ln
[ |t|3/2 |t+ 2|1/2

|t + 1|2
]

+ c.

(e) Let I =

∫

2t+ 1

t2(t+ 1)
dt.

Let
2t + 1

t2(t + 1)
=

A

t
+

B

t2
+

C

t + 1
,

where we have adopted the form which is appropriate for repeated factors.

Hence,

2t+ 1 = At(t + 1) + B(t + 1) + Ct2.

From this we take the following route:

t = 0 ⇒ 1 = B,

t = −1 ⇒ −1 = C,

coeff. of t2 ⇒ 0 = A + C ⇒ A = 1.

Hence

I =

∫

2t + 1

t2(t + 1)
dt

=

∫

[1

t
+

1

t2
− 1

t+ 1

]

dt

= ln |t| − t−1 − ln |t+ 1|+ c

= ln
∣

∣

∣

t

t + 1

∣

∣

∣
− t−1 + c.
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(f) Let I =

∫

t2 − 2

(t + 1)(t2 + 2t + 2)
dt.

We may now set,
t2 − 2

(t + 1)(t2 + 2t + 2)
=

A

t + 1
+

B + Ct

t2 + 2t+ 2
,

because the quadratic factor does not have real linear factors. Hence

t2 − 2 = A(t2 + 2t + 2) + (B + Ct)(t + 1).

From this we take the following route:

t = −1 ⇒ −1 = A

t = 0 ⇒ −2 = 2A + B ⇒ B = 0

coeff. of t2 ⇒ 1 = A + C ⇒ C = 2.

Hence,

I =

∫

t2 − 2

(t + 1)(t2 + 2t + 2)
dt

=

∫

[

− 1

t + 1
+

2t

t2 + 2t + 2

]

dt

=

∫

[

− 1

t + 1
+

2t+ 2

t2 + 2t + 2
− 2

t2 + 2t + 2

]

dt 2nd term of form f ′/f

=

∫

[

− 1

t + 1
+

2t+ 2

t2 + 2t + 2
− 2

(t + 1)2 + 1

]

dt 3rd term in tan−1 form

= − ln |t+ 1| + ln |t2 + 2t + 2| − 2 tan−1(t + 1) + c.

(g) Let I =

∫

1

t(t2 + 1)2
dt.

On this occasion we have a repeated irreducible quadratic factor. Hence we set

1

t(t2 + 1)2
=

A

t
+

B + Ct

t2 + 1
+

D + Et

(t2 + 1)2
,

and so

1 = A(t2 + 1)2 + (B + Ct)t(t2 + 1) + (D + Et)t,

or

1 = A(t4 + 2t2 + 1) + (B + Ct)(t3 + t) + (D + Et)t.

It is probably best just to compare the coefficients of the various powers of t:

t4 : A + C = 0,

t3 : B = 0,

t2 : 2A + C + E = 0,

t1 : B + D = 0,

1 : A = 1,
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and so A = 1, B = 0, C = −1, D = 0 and E = −1. Therefore the integral becomes,

I =

∫

1

t(t2 + 1)2
dt

=

∫

[1

t
− t

t2 + 1
− t

(t2 + 1)2

]

dt

=

∫

[1

t
− 1

2
× 2t

t2 + 1
− t

(t2 + 1)2

]

dt.

The first two integrals are of the form f ′/f and can be written down easily. The third may be dealt with by

substitution. We let y = t2 + 1 and so dy = 2t dt. Therefore the third integral becomes,
∫

t

(t2 + 1)2
dt = 1

2

∫

2t dt

(t2 + 1)2
= 1

2

∫

dy

y2
= −1

2
y−1 + c = −

1/2

t2 + 1
+ c.

Hence our final answer is,

I = ln |t| − 1

2
ln |t2 + 1| + 1

2(t2 + 1)
+ c

= ln
∣

∣

∣

t
√
t2 + 1

∣

∣

∣
+

1

2(t2 + 1)
+ c.

4. Find the following integrals which involve top-heavy quotients. Do this by first performing a kind of long division.

(a)

∫ 1

0

t2 + 4t+ 5

t + 1
dt, (b)

∫

t3 + t2 − 3t − 5

t2 + 3t+ 2
dt,

(c)

∫

3t3 + t2 − t − 2

t+ 1
dt, (d)

∫ 1

0

t4(1 − t)4

1 + t2
dt.

Although it will take quite a while to solve part (d), you will know if the answer is correct because it should give

you an “Oh, that’s really interesting" moment.

A4.

(a) There are two ways of performing the required long division but they are, of course, entirely equivalent. One

of them is what one does routinely with numerical quotients such as for 765/32. The other works well with

polynomials and here it is for the present context. The denominator is (t+1) and we will convert (t2+4t+5),

a polynomial in t, into a a function of t which multiplies (t + 1) together with a remainder:

t2 + 4t + 5 = t(t + 1) + 3t+ 5 red terms are the coefficients of t

= t(t + 1) + 3(t + 1) + 2 blue terms are the constants

= t(t + 1) + 3(t + 1) + 2.

Hence we obtain,
t2 + 4t + 5

t + 1
=

t(t + 1) + 3(t+ 1) + 2

t+ 1
= t + 3 +

2

t+ 1
,

and so our desired integral is,
∫ 1

0

t2 + 4t+ 5

t + 1
dt =

∫ 1

0

t(t + 1) + 3(t + 1) + 2

t + 1
dt =

∫ 1

0

[

t+ 3 +
2

t + 1
] dt

=
[

1

2
t2 + 3t+ 2 ln |t+ 1|

]1

0

= 7

2
+ 2 ln 2.
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(b) This one is a cubic divided by a quadratic, and therefore the division is a little more awkward. We seek a

suitable expression for,
t3 + t2 − 3t − 5

t2 + 3t+ 2
.

Therefore,

t3 + t2 − 3t− 5 = (t2 + 3t+ 2)(t − 2) + t − 1

using the same procedure as in Q4a. Therefore,

t3 + t2 − 3t− 5

t2 + 3t+ 2
= t − 2 +

t − 1

t2 + 3t + 2
.

Now we’re faced with a bottom-heavy quotient where the denominator can be factorised. After a little work

with partial fractions we obtain,

t− 1

t2 + 3t + 2
=

t− 1

(t + 1)(t + 2)
=

3

t+ 2
− 2

t + 1
.

Therefore the integration proceeds as follows,

∫

t3 + t2 − 3t− 5

t2 + 3t+ 2
dt =

∫

[

t − 2 +
3

t+ 2
− 2

t + 1

]

dt

= 1

2
t2 − 2t + 3 ln |t + 2| − 2 ln |t+ 1|+ c.

(c) We have

3t3 + t2 − t+ 2 = (t + 1)(3t2 − 2t+ 1) + 1,

and hence,
3t3 + t2 − t + 2

t + 1
= 3t2 − 2t+ 1 +

1

t + 1
.

Hence the integral we seek is,

∫

3t3 + t2 − t+ 2

t+ 1
=

∫

[

3t2 − 2t+ 1 +
1

t + 1

]

dt = t3 − t2 + t + ln |t+ 1|+ c.

(d) We need to start by multiplying out the numerator, and therefore the integrand becomes

t4(1 − t)4

1 + t2
=

t8 − 4t7 + 6t6 − 4t5 + t4

t2 + 1
,

where I have placed all the powers of t in descending order. Now we play the same game of long division as we

did for part (a), followed by the appropriate simplification after division:

t8 − 4t7 + 6t6 − 4t5 + t4

t2 + 1
=

t6(t2 + 1) − 4t5(t2 + 1) + 5t4(t2 + 1) − 4t2(t2 + 1) + 4(t2 + 1) − 4

t2 + 1

= t6 − 4t5 + 5t4 − 4t2 + 4 − 4

t2 + 1
.
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Hence our desired integral is,

∫ 1

0

t4(1 − t)4

1 + t2
dt =

∫ 1

0

[

t6 − 4t5 + 5t4 − 4t2 + 4 − 4

t2 + 1

]

dt

=
[

1

7
t7 − 4

6
t6 + t5 − 4

3
t3 + 4t− 4 tan−1 x

]1

0

= 22

7
− π.

That’s a nice answer and my calculator reckons that it comes to 0.00126449 (6SFs). Of course many folk

regard 22

7
to be a good approxiamtion to π, and if one were to use that here then the integral would become

zero. Given that the integrand is positive (with zero values only at t = 0 and t = 1) one must expect a positive

answer, and so a zero solution is very definitely incorrect.


