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Department of Mechanical Engineering, University of Bath

Engineering Mathematics S1 ME12002

Problem Sheet 5 — Integration by Parts

1 Obtain the following integrals.

(a)

∫

x5 cos axdx, (b)

∫

x5 sinaxdx, (c)

∫

x5eax dx, (d)

∫

x5eajx dx.

(e) Can you find the integral,

∫

x5e−ax dx, directly from the answer to part (c)?

(f) Have you seen the real part of the answer to Q1d before? And the imaginary part?

A1. These are all integration by parts examples. For convenience and minimisation of effort I will, of course, use

the ‘Rees’ method.

(a)

∫

x5 cos bx dx =
[

x5
][sin bx

b

]

−
[

5x4
][

−cos bx

b2

]

+
[

20x3
][

−sin bx

b3

]

−
[

60x2
][cos bx

b4

]

+
[

120x
][sin bx

b5

]

−
[

120
][

−cos bx

b6

]

+ c

=
sin bx

b6

[

(bx)5 − 20(bx)3 + 120(bx)
]

+
cos bx

b6

[

5(bx)4 − 60(bx)2 + 120
]

+ c.

(b)

∫

x5 sin bx dx =
[

x5
][

−cos bx

b

]

−
[

5x4
][

−sin bx

b2

]

+
[

20x3
][cos bx

b3

]

−
[

60x2
][sin bx

b4

]

+
[

120x
][

−cos bx

b5

]

−
[

120
][

−sin bx

b6

]

+ c

=
− cos bx

b6

[

(bx)5 − 20(bx)3 + 120(bx)
]

+
sin bx

b6

[

5(bx)4 − 60(bx)2 + 120
]

+ c

(c)

∫

x5eax dx =
[

x5
][eax

a

]

−
[

5x4
][eax

a2

]

+
[

20x3
][eax

a3

]

−
[

60x2
][eax

a4

]

+
[

120x
][eax

a5

]

−
[

120
][eax

a6

]

+ c

=
eax

a6

[

(ax)5 − 5(ax)4 + 20(ax)3 − 60(ax)2 + 120(ax)− 120
]

+ c

(d)
∫

x5eajx dx =
[

x5
][eajx

aj

]

−
[

5x4
][ eajx

a2j2

]

+
[

20x3
][ eajx

a3j3

]

−
[

60x2
][ eajx

a4j4

]

+
[

120x
][ eajx

a5j5

]

−
[

120
][ eajx

a6j6

]

+ c

=
eajx

(aj)6

[

(ajx)5 − 5(ajx)4 + 20(ajx)3 − 60(ajx)2 + 120(ajx)− 120
]

+ c
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Now to tidy up this expression and to separate it into its real and imaginary parts.

∫

x5eajx =
eajx

(aj)6

[

(ajx)5 − 5(ajx)4 + 20(ajx)3 − 60(ajx)2 + 120(ajx)− 120
]

+ c

= −eajx

a6

[

j(ax)5 − 5(ax)4 − 20j(ax)3 + 60(ax)2 + 120j(ax)− 120
]

+ c

=
cos ax+ j sinax

a6

[ (

5(ax)4 − 60(ax)2 + 120
)

− j
(

(ax)5 − 20(ax)3 + 120(ax)
) ]

+ c

=

[

sinax

a6

[

(ax)5 − 20(ax)3 + 120(ax)
]

+
cos ax

a6

[

5(ax)4 − 60(ax)2 + 120
]

]

+ j

[

− cos ax

a6

[

(ax)5 − 20(ax)3 + 120(ax)
]

+
sinax

a6

[

5(ax)4 − 60(ax)2 + 120
]

]

+ c.

(e) Can you find the integral,
∫

x5e−ax dx, directly from the answer to part (c)?

Answer: Just replace all the occurences of “a” by “−a”:

∫

x5e−ax dx = −e−ax

a6

[

(ax)5 + 5(ax)4 + 20(ax)3 + 60(ax)2 + 120(ax) + 120
]

+ c.

(f) Have you seen the real part of the answer to Q1d before? And the imaginary part?

Yes, they are the solutions to Q1a and Q1b, respectively, i.e. the red and blue solutions in Q1d. In fact this

happens because of the following,

∫

x5eajx dx =

∫

x5 (cosax + j sin ax) dx =

∫

x5 cos axdx+ j

∫

x5 sinax dx.
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2. Evaluate the following integrals by integrating by parts twice.

(a)

∫

sin ax sinh bx dx, (b)

∫

sinax cosh bx dx, (c)

∫ ∞

0

e−ax cosωxdx, (d)

∫ ∞

0

e−ax sinωx dx.

Can you think of an easy way of doing the last two integrals simultaneously which doesn’t involve integration

by parts? [Hint: consider the solution to Q1f.]

A2.

(a) Let I =

∫

sinax sinh bx dx. We may choose either function in the integrand to integrate first. Choose the

sinh function, and integrate by parts twice:

I =

∫

sinax sinh bx dx

=
[

sinax
][cosh bx

b

]

−
[

a cos ax
][sinh bx

b2

]

+

∫

[

−a2 sin ax
][sinh bx

b2

]

dx

=
1

b2

[

b sin ax cosh bx − a cosax sinh bx
]

− a2

b2
I

=⇒
(

1 +
a2

b2

)

I =
1

b2

[

b sin ax cosh bx − a cosax sinh bx
]

=⇒ I =
1

a2 + b2

[

b sin ax cosh bx − a cosax sinh bx
]

.

Alternatively, if one chooses to integrate the sin function first, then we obtain,

I =

∫

sinax sinh bx dx

=
[− cos ax

a

][

sinh bx
]

−
[− sinax

a2

][

b cosh bx
]

+

∫

[− sinax

a2

][

b2 cosh bx
]

dx

=
1

a2

[

b sinax cosh bx − a cos ax sinh bx
]

− b2

a2
I

=⇒
(

1 +
b2

a2

)

I =
1

a2

[

b sinax cosh bx − a cos ax sinh bx
]

=⇒ I =
1

a2 + b2

[

b sin ax cosh bx − a cosax sinh bx
]

.

(b)

∫

sinax cosh bx dx =
1

a2 + b2

[

b sinax sinh bx − a cosax cosh bx
]

.

I’ve missed out the workings. Hopefully no problem there.
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(c) We’ll do this one in full. We have

I =

∫ ∞

0

e−at cosωt dt

=
[e−at

−a

][

cosωt
]∞

0
−

[e−at

a2

][

−ω sinωt
]∞

0
+

∫ ∞

0

[e−at

a2

][

−ω2 cosωt
]

dt

=
1

a
+ 0 − ω2

a2
I

hence
(

1 +
ω2

a2

)

I =
1

a

⇒ (a2 + ω2)I = a

⇒ I =
a

a2 + ω2
.

Note that we could have done this by integrating the cosine first rather than the exponential. Obviously this

would yield the same answer.

(d) The answer to this is,

I =

∫ ∞

0

e−at sinωt dt =
ω

a2 + ω2
.

Given our experience with Q1, we can combine the integrals in Q2c and Q2d as follows:

I =

∫ ∞

0

e−at cosωt dt+ j

∫ ∞

0

e−at sinωt dt

=

∫ ∞

0

e−at
[

cosωt + j sinωt
]

dt

=

∫ ∞

0

e−(a−jω)t dt

=
1

a − jω

=
a + jω

(a − jω)(a + jω)

=
a + jω

a2 + ω2

=
a

a2 + ω2
+ j

ω

a2 + ω2
.

Therefore the real part of I yields the integral in Q2c and the imaginary part the integral in Q2d.
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3. Evaluate

(a)

∫

[

ln |x|
]2

dx, (b)

∫

[

ln |x|
]3

dx, (c)

∫

[

ln |x|
]n

dx, (d)

∫ 1

0

ln |x|
x1/2

dx (use: x1/2 lnx → 0

as x → 0+),

(e)

∫ 2

0

x3 ln |x| dx, (f) Evaluate Q3a by first using the substitution x = ey.

A3. In many of these answers I have been lazy in my presentation and have used lnx instead of ln |x|. I originally

had the modulus signs in, but the typesetting looked really ugly. The following is correct when x > 0, of course,

but do replace x by |x| in your mind whenever it is an argument of the ln function.

(a) This may be done by integrating by parts where the second function is 1:
∫

[lnx]2 dx =

∫

[lnx]2 × 1 dx

=
[

[lnx]2
] [

x
]

−
∫

[2 lnx

x

] [

x
]

dx (chain rule!)

= x[lnx]2 − 2

∫

lnxdx (on tidying up the integrand)

= x[lnx]2 − 2
[

x lnx − x
]

(using
∫

lnxdx from the notes, or otherwise)

= x[lnx]2 − 2x lnx + 2x

= x
[

[lnx]2 − 2 lnx + 2
]

.

(b) This follows in the same way.
∫

[lnx]3 dx =

∫

[lnx]3 × 1 dx

=
[

[lnx]3
] [

x
]

−
∫

[3[lnx]2

x

] [

x
]

dx

=
[

[lnx]3
] [

x
]

− 3

∫

[lnx]2 dx

Now we need to evaluate the integral of the square of lnx in the same way, but this has already been done in

Q3a. Eventually we will get back to
∫

[lnx]3 dx = x
[

[lnx]3 − 3[lnx]2 + 6[lnx]− 6
]

.

(c)The same approach yields
∫

[lnx]n dx = x
[

[lnx]n − n[lnx]n−1 + n(n − 1)[lnx]n−2 · · · + (−1)n−1(n!)[lnx] + (−1)n(n!)
]

.
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These integrals could also be evaluated, and possibly more easily and quickly, by first substituting x = ey.

A possibly tidier way of writing down this solution is the following:

∫

[lnx]n dx = n! × x

[

[lnx]n

n!
− [lnx]n−1

(n − 1)!
+

[lnx]n−2

(n − 2)!
+ · · · + (−1)n−1 [lnx]

1!
+ (−1)n

]

.

(d) This time we have,

∫ 1

0

lnx

x1/2
dx =

[

2x1/2
][

lnx
]1

0
−

∫ 1

0

[

2x1/2
][1

x

]

= 0 − 2

∫ 1

0

x−1/2 dx using the given limit result and tidying the integral

= −2
[

2x1/2
]1

0

= −4.

We expect a negative result because lnx is negative within the range of integration.

(e) We have,
∫ 2

0

x3 lnx dx =
[x4

4

][

lnx
]2

0
−

∫ 2

0

[x4

4

][1

x

]

dx

= 4 ln 2 −
∫ 2

0

x3

4
dx (x4 lnx = 0 when x = 0)

= 4 ln 2 −
[x4

16

]2

0

= 4 ln 2 − 1.

(f) The substitution is x = ey and therefore dx = ey dy. The integral becomes,

∫

[lnx]2 dx =

∫

y2ey dy

= (y2 − 2y + 2)ey + c (integration by parts)

= x
[

[lnx]2 − 2 lnx + 2
]

+ c (returning to x)

Although Q3a uses integration parts as well, it has to execute each of them one-by-one and therefore it is slow

relative to this method which starts with a substitution.
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4. The mandatory silly integral:

∫

sin(x) ln
[

tan
(x

2
+

π

4

)]

dx.

A4. Yes, this one is silly from the point of view that there is no way one is going to attempt to integrate the log

function. However, one can differentiate it. Using the chain rule we obtain,

d

dx
ln

(

tan(
x

2
+

π

4
)

)

=
1

tan(x/2 + π/4)
× sec2(x/2 + π/4) × 1

2

=
cos(x/2 + π/4)

2 sin(x/2 + π/4) cos2(x/2 + π/4)

=
1

2 sin(x/2 + π/4) cos(x/2 + π/4)
=

1

sin(x + π/2)
=

1

cosx
.

We are now in a position to perform the integration:
∫

sin(x) ln

(

tan(
x

2
+

π

4
)

)

dx =
[

− cosx
][

ln

(

tan(
x

2
+

π

4
)

)

]

−
∫

[

− cosx
][ 1

cosx

]

dx

= −(cosx)ln

(

tan(
x

2
+

π

4
)

)

+ x + c.

5. Use integration by parts once to obtain a formula for In =

∫ ∞

0

xne−ax dx in terms of In−1 — such a

formula is called a Reduction Formula or a Recurrence Relation. Find I0 directly, and use the reduction

formula to evaluate I6. Check your answer by evaluating I6 using integration by parts.

A5. Doing what is asked we get

In =

∫ π

0

xne−ax dx

=
[

xn
] [

−e−ax/a
]∞

0
−

∫ ∞

0

[

nxn−1
] [

−e−ax/a
]

dx

= 0 + (n/a)

∫ ∞

0

xn−1e−ax dx

= (n/a)In−1.

Therefore we have an expression for In in terms of In−1; this is what is called a recurrence relation or even

a reduction formula. Now for n = 0 we have,

I0 =

∫ ∞

0

e−ax dx = 1/a.

Therefore I0 = 1/a, I1 = 1/a2, I2 = (2/a)I1 = 2/a3, I3 = 3I2 = (6/a4) = 3!/a4, and so on.

Hence

In =
n!

an+1
.
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6. Something weird. Evaluate the following indefinite integral using one integration by parts where you’ll choose

to integrate f ′ first:

I =

∫

1

f
f ′ dx.

Can you explain why the answer is incorrect? What happens if you choose to integrate between x = a and

x = b?

A6. Let’s do it and see what happens....

I =

∫

1

f
f ′ dx as given

=
[ 1

f

] [

f
]

−
∫

[

− f ′

f2

] [

f
]

dx (I by P done)

= 1 +

∫

1

f
f ′ dx (after simplification)

= 1 + I.

Therefore I = 1 + I which means that 0 = 1. So what has gone stupidly wrong here?

We’ve omitted the arbitrary constants. That might sound glib, but all indefinite integrals will have an infinite

number of solutions and they differ solely by the value of the arbitrary constant.

OK, so what happens with the definite integral case? We get,

I =

∫ b

a

1

f
f ′ dx as given

=
[1

f

] [

f
]b

a
−

∫ b

a

[

− f ′

f2

] [

f
]

dx (I by P done)

=
[

1
]b

a
+

∫ b

a

1

f
f ′ dx (after simplification)

= 0 + I.

So we don’t get much except that I = I, so at least the procedure is self-consistent.

7. Also weird. Define I(a) according to I(a) =

∫ ∞

0

e−ax dx, and evaluate this integral. Clearly the value

taken by I(a) depends on a, and therefore we can differentiate it with respect to a. Do this and find I′(a)

both as an integral and as a function of a. Continue to differentiate in this way with the aim of eventually

finding

∫ ∞

0

x4e−ax dx.

Using this idea and the solution to Q2c, find

∫ ∞

0

xe−ax cosωxdx, the integral of the product of three

functions.
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A7. We find that,

I(a) =

∫ ∞

0

e−ax dx =
[e−ax

−a

]∞

0
=

1

a
.

We note that the value that I takes depends on the chosen value of a, and therefore I is a function of a. So

now we shall take the a-derivative of the above equation:

I′(a) =

∫ ∞

0

−xe−ax dx = − 1

a2
. (1)

Another a-derivative gives,

I′′(a) =

∫ ∞

0

x2e−ax dx =
2

a3
.

Two more:

I′′′(a) =

∫ ∞

0

−x3e−ax dx = − 6

a4
,

I′′′′(a) =

∫ ∞

0

x4e−ax dx =
24

a5
.

We have, of course, assumed that the processes of integration with respect to x and differentiation with respect

to a may be done in either order; this is generally true. Given the way that the coefficients have accumulated

on the far right hand side of each integral we can say that,
∫ ∞

0

x4e−ax dx =
4!

a5
.

The integral,

∫ ∞

0

xe−ax cosωxdx, may now be evaluated by taking the a-derivative of the result of Q2c.

That result is,

J(a, ω) =

∫ ∞

0

e−ax cosωxdx =
a

a2 + ω2
.

Therefore,
∂J

∂a
=

∫ ∞

0

−xe−ax cosωx dx =
∂

∂a

[ a

a2 + ω2

]

=
ω2 − a2

(a2 + ω2)2
.

I have used partial derivative notation here — I shall introduce you formally to it next semester — because J

is a function of both a and ω. Hence,
∫ ∞

0

xe−ax cosωxdx =
a2 − ω2

(a2 + ω2)2
.

8. Evaluate the mean and RMS of the following functions

(a) f(t) = t2 (0 ≤ t ≤ 1),

(b) f(t) = sin t (0 ≤ t ≤ 2π),

(c) f(t) = | sin t| (0 ≤ t ≤ 2π),

(d) f(t) = e−t (0 ≤ t ≤ 1).

A8.

(a) The mean and RMS are

mean =

∫ 1

0

t2 dt = 1
3
.
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RMS =

√

∫ 1

0

t4 dt =
√

1
5
.

(b) The mean and RMS are

mean =
1

2π

∫ 2π

0

sin t dt = 0.

RMS =

√

1

2π

∫ 2π

0

sin2 t dt =

√

1

2π

∫ 2π

0

1 − cos 2t

2
dt =

√

1

2π
× π =

1
√
2
.

(c) For the next function, which is a rectified sine wave, we can consider the standard sine wave between 0 and π

as the function repeats exactly outside of this range. Hence

mean =
1

π

∫ π

0

sin t dt =
1

π

[

− cos t
]π

0
=

2

π
.

RMS =

√

1

π

∫ π

0

sin2 t dt =

√

1

π

∫ π

0

1− cos 2t

2
dt =

√

1

π
× π/2 =

1√
2
.

Thus the RMS values of the sine wave and of the rectified sine wave are equal.

(d) The mean is given by

mean =

∫ 1

0

e−t dt = 1 − e−1 ≃ 0.3679.

The RMS is

RMS =

√

∫ 1

0

e−2t dt =
√

1
2
(1 − e−2) ≃ 0.6575.

9. This is a set of miscellaneous questions and you may wish to wait until the revision period to tackle

them.

I won’t give too many hints about how to do them! Sorry. Some are substitutions but (e) should be done both

as an integration by parts and by using a suitable multiple angle formula. Some will require the use of more than

one method. Questions (g) and (h) are trick questions — it all depends on how quickly you can see the trick.

As a guide (or perhaps a challenge!), when I saw (h) for the very first time (on a youtube video) I managed

5 seconds, and so it was immediately marked up as something that I just had to try out on you!

(a)

∫ π2

0

sin
√
xdx, (b)

∫ ∞

0

e−
√

x dx,

(c)

∫ ∞

0

e−x1/4

dx, (d)

∫ e

1

sin(lnx) dx,

(e)

∫ π/2

0

sinx cos 5xdx, (f)

∫

x + 3
√
x2 + 6x + 10

dx,
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(g)

∫ ∞

−∞
e−x4

sin 3xdx, (h)

∫ π/2

0

√
sinx

√
sinx +

√
cosx

dx.

(i)

∫

√
1 − x
√
x

dx, (j)

∫

1
√
x + 1 +

√
x
dx, (k)

∫ ∞

0

1

1 + ex
dx.

A9. In the following I will try to give some reasoning about I would approach these cases.

(a) The principle here is to remove the square root within the sine and hopefully the mess that accrues isn’t too

bad. So, we let x = y2. The bookkeeping is:

x = y2 =⇒ dx = 2y dy, x = 0 =⇒ y = 0, x = π2 =⇒ y = π.

Hence,

I =

∫ π2

0

sin
√
x dx

=

∫ π

0

(sin y) 2y dy so we need to integrate by parts

= 2
[

[− cos y][y]− [− sin y][1]
]π

0

= 2π.

(b)This one looks a bit like the previous one so we’ll use the same trick. The bookkeeping is,

x = y2 =⇒ dx = 2y dy, x = 0 =⇒ y = 0, x → ∞ =⇒ y → ∞.

Hence,

I =

∫ ∞

0

e
√

x dx

=

∫ ∞

0

ey 2y dy again integration by parts

= 2
[

[−e−y][y]− [e−y][1]
]∞

0

= 2.

(c) This too displays a similarity to the previous question, so we’ll follow the same sort of approach (noting that

this won’t work should the integrand have been e−y2

or e−y4

). So we’ll let y = x1/4. The bookkeeping is,

x = y4 =⇒ dx = 4y3 dy x = 0 =⇒ y = 0, x → ∞ =⇒ y → ∞.
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Hence,

I =

∫ ∞

0

e−x1/4

dx

=

∫ ∞

0

e−y 4y3 dy (yes, integration by parts again)

= 4
[

[−e−y][y3]− [e−y][3y2] + [−e−y][6y]− [e−y][6]
]∞

0

= 24.

Given how these last two have worked out, I would guess that

∫ ∞

0

e−x1/n

dx, where n is a positive integer,

has the value, n!. Do please check this!

(d) We’ll remove the log from within the sine by setting x = ey, and then we’ll see if it i possible to proceed.

Hence,

x = ey =⇒ dx = ey dy x = 1 =⇒ y = 0, x = e =⇒ y = 1,

and so,

∫ e

1

sin(lnx) dx =

∫ 1

0

sin y ey dy (will try the complex number route for a change)

= Imag

∫ 1

0

ey ejy dy = Imag

∫ 1

0

e(1+j)y dy

= Imag
[ 1

1 + j
e(1+j)y

]1

0

= Imag
[

1
2
(1 − j)

(

e(1+j) − 1
)]

(using complex conjugate)

= Imag
[

1
2
(1 − j)

(

e(cos 1 + j sin 1) − 1
)]

= 1
2

[

e(sin 1 − cos 1) − 1
]

(having taken the imaginary part)

This approach of letting sin y = Imag [ ejy ] can be quicker than when using integration by parts, despite the

number of lines used above.

(e) As requested, we’ll do it in two different ways. The first will involve the use of multiple-angle formulae.

We’ll use

sinax cos bx = 1
2

[

sin(a + b)x + sin(a− b)x
]

,

and so our case reads:

sinx cos 5x = 1
2

[

sin 6x − sin 4x
]

.

Therefore

I =

∫ π/2

0

sinx cos 5x = 1
2

∫ π/2

0

[

sin 6x − sin 4x
]

dx = 1
2

[

−1
6
cos 6x+ 1

4
cos 4x

]π/2

0
= 1

6
.
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Alternatively, we may attempt integration by parts.

I =

∫ π/2

0

sinx cos 5x

=
[

− cosx
][

cos 5x
]π/2

0
−

[

− sinx
][

−5 sin 5x
]π/2

0
+

∫ π/2

0

[

− sinx
][

−25 cos 5x
]

dx

= (0 − (−1)) − (5 − 0) + 25I

=⇒ −24I = −4 =⇒ I = 1
6
.

Just to note that Integration by Parts may be used whenever one has a product of sines, or of cosines, or of

one of each. The method won’t work when the coefficients of x in the sinusoids are equal; Examples include

sin 3x cos 3x. It is worth attempting the following to see the manner in which Integration by Parts fails:

∫ π/2

0

sin 3x cos 3xdx.

(f) If this didn’t have the square root in the denominator, then we could have used completion of the square and

then followed the usual tricks for when one has a linear factor divided by an irreducible quadratic. Perhaps we

might as well start the same way and see what happens.

Given that x2 +6x+ 10 = (x+ 3)2 + 1, we can let x+ 3 = tan θ. Hence dx = sec2 θ dθ. The integral

becomes,

I =

∫

x + 3√
x2 + 6x+ 10

dx

=

∫

tan θ
√

tan2 θ + 1
sec2 θ dθ,

=

∫

tan θ sec θ dθ (I’ll assume that I don’t know that this integral is sec θ)

=

∫

sin θ

cos2 θ
dθ

=

∫

− 1

z2
dz =

1

z
(using z = cos θ substitution)

=
1

cos θ
= sec θ

=
√
sec2 θ

=
√

1 + tan2 θ

=
√
x2 + 6x+ 10.

Now that looks fishy because we have reproduced the original denominator. This suggests that there may

have been an easier way of doing this. Actually, that easier method is related to the so-called f ′/f method.
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The present integrand is actually of the form, f ′/
√
f , and we can use this to determine a much better initial

substitution: let v = x2 + 6x+ 10. Given that dv = (2x2 + 6x)dx, or 1
2
dv = (x + 3)dx, we have,

I =

∫ 1
2√
v
dv =

√
v + c =

√

x2 + 6x + 10 + c.

In general, we may wish to evaluate

∫

f ′

√
f
dx where f = f(x) is an unspecified function. Let y =

√
f , and

hence,

dy =
f ′

2
√
f
dx.

Therefore,
∫

f ′

√
f
dx =

∫

2 dy = 2y + c = 2
√

f + c.

The big question: can this result be generalised further?

(g) The integral is zero because the integrand is odd and the range of integration is symmetric.

(h) The way that I worked out the solution in my head involved the following two thoughts: (i) the denominator is

even about x = π/4, and (ii) therefore the value of the integral would be exactly the same if I were to replace

the numerator by
√
cosx. Given that we now have two integrals with exactly the same value we might as well

add them together:

∫ π/2

0

√
sinx

√
sinx +

√
cosx

dx+

∫ π/2

0

√
cosx

√
sinx +

√
cosx

dx

=

∫ π/2

0

√
sinx +

√
cosx√

sinx +
√
cosx

dx

=

∫ π/2

0

1 dx

= 1
2
π.

Hence the required value is half of that, 1
4
π.

(i) We’ll get rid of the square root in the denominator, so we’ll let x = y2. Hence the bookkeeping is,

x = y2 =⇒ dx = 2y dy, x = 0 =⇒ y = 0, x = 1 =⇒ y = 1.
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Hence,

I =

∫ 1

0

√
1 − x
√
x

dx

=

∫ 1

0

√

1 − y2

y
2y dy

= 2

∫ 1

0

√

1 − y2 dy (now use y = sin θ)

= 2

∫ π/2

0

cos θ cos θ dθ (also note the limits have been changed)

=

∫ π/2

0

(

cos 2θ + 1
)

dθ (double angle formula)

=
[sin 2θ

2
+ θ

]π/2

0

= 1
2
π.

(j) An unusual denominator, but this one makes me think of how we use the complex conjugate when dividing a

complex number by another. So we will start by multiplying both the numerator and the denominator by a

suitable function.

I =

∫

1
√
x + 1 +

√
x
dx

=

∫

(
√
x + 1 − √

x)

(
√
x + 1 +

√
x)(

√
x + 1 − √

x)
dx

=

∫

(
√
x + 1 − √

x)

(x + 1) − (x)
dx

=

∫

[√
x + 1 −

√
x
]

dx

= 2
3

[

(x + 1)3/2 − x3/2
]

+ c.

(k) We’ll let let y = 1 + ex for there doesn’t seem to be anything else that suggests itself. The bookkeeping:

y = 1+ex =⇒ dy = ex dx =⇒ dx = dy/(y−1), x = 0 =⇒ y = 2, x → ∞ =⇒ y → ∞.
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The integral becomes,
∫ ∞

0

1

1 + ex
dx =

∫ ∞

2

1

(y − 1)y
dy

=

∫ ∞

2

[ 1

y − 1
− 1

y

]

dy

=
[

ln
(y − 1

y

)]∞

2

= − ln 1
2

= ln 2.

The indefinite integral corresponding to the integrand is

ln
ex

ex + 1
, or ln

1

1 + e−x
.


