
Derivation of the formula for classifying critical points on a surface

In the lectures we considered the critical points of a surface, f(x, y), and they are defined as being
at those values of x and y at which both

∂f

∂x
= 0 and

∂f

∂y
= 0. (1)

The classification of the resulting critical points then depends on the value of

∂2f

∂x2

∂2f

∂y2
−

( ∂2f

∂x∂y

)2

. (2)

The aim of this supplementary handout is to derive this formula.

Let us assume for the sake of simplicity of presentation that a critical point lies at (x, y) = (0, 0).
Now we may expand f(x, y) as a double Taylor’s series about that point, as follows:

f(x, y) = f(0, 0) +
[

xfx(0, 0) + yfy(0, 0)
]

+ 1

2

[

x2fxx(0, 0) + 2xyfxy(0, 0) + y2fyy(0, 0)
]

+ · · · . (3)

Although we won’t be covering Taylor’s series in more than one dimension, it is possible to derive
the above by first attempting a standard Taylor’s series in the x-direction and following that by
one in the y-direction. It’s worth checking that out.

If we are at a critical point, then fx = fy = 0. Therefore Eq. (3) reduces to,

f(x, y) = f(0, 0) + 1

2

[

x2fxx(0, 0) + 2xyfxy(0, 0) + y2fyy(0, 0)
]

+ · · · . (4)

If we were to be at a minimum, then the expression in square brackets must be positive for all
values of x and y. Likewise, for a maximum, it must always be negative. If the critical point were
a saddle point, then it will be sometimes be positive and sometimes negative. So the way we will
proceed is to assume at first that we are at a saddle point, and then we’ll try to find out in which
directions the term in the square bracket is precisely zero. If we can find an expression for those
directions, then we have a saddle point, otherwise the critical point is a maximum or a minimum.

Let us take a circular tour about the origin by setting,

x = ǫ cos θ and y = ǫ sin θ. (5)

Therefore Eq. (4) becomes,

f(x, y) = f + 1

2
ǫ2
[

cos2 θfxx + 2 sin θ cos θfxy + sin2 θfyy

]

+ · · · , (6)

where all functions of x and y on the right hand side are evaluated at x = y = 0.

If we are at a saddle point, then there will be values of θ for which the term in square brackets in
Eq. (6) is zero, and therefore

cos2 θfxx + 2 sin θ cos θfxy + sin2 θfyy = 0. (7)
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If the angle for which (7) is satisfied does not correspond to where cos θ = 0, then we may divide
both sides of Eq. (7) by cos θ to obtain,

fxx + 2 tan θfxy + tan2 θfyy = 0.(8)

This is a quadratic equation for tan θ, and it has the solution,

tan θ =
−fxy ±

√

f2
xy

− fxxfyy

fyy
. (9)

We note that we could also have divided both sides of (7) by sin θ, and this would eventually have
yielded,

cot θ =
−fxy ±

√

f2
xy

− fxxfyy

fxx
, (10)

which is precisely the same solution.

What happens next depends on the sign of the term inside the square root. When fxxfyy−f2

xy
< 0,

then the term inside the square root is positive, and hence the expression yields real values for tan θ.
This means that there is a saddle point at x = y = 0.

When fxxfyy − f2

xy
> 0, then the term inside the square root is negative, and hence there is no real

solution for tan θ. In other words, the term in square brackets in Eq. (6) cannot be zero, and given
that it varies continuously as θ varies, it must always be either positive or negative. Further, the
fact that fxxfyy − f2

xy
> 0 means that fxx and fyy must have the same sign. If both are positive,

then the critical point is a minimum, by analogy with the equivalent one dimensional situation.
Similarly, a maximum will correspond to when both fxx < 0 and fyy < 0.

Hence we recover the classification given in the lecture notes, namely that,

fxxfyy − f2

xy
< 0 Saddle point,

fxxfyy − f2

xy
> 0 Maximum when fxx < 0,

Minimum when fxx > 0.

(11)
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