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Effects of tortuosity and dispersion on the effective thermal conductivity of fluid-saturated porous media
are investigated analytically with help of a volume averaging theory. Firstly, a general expression for the
effective stagnant thermal conductivity has been derived using a unit cell model, which consists of rect-
angular solids with connecting arms in an in-line arrangement. The validity of the expression for the stag-
nant thermal conductivity has been confirmed comparing the present results with available experimental
and theoretical data for packed beds, porous foams and wire screens. Secondly, an general expression for
the thermal dispersion conductivity has been sought with help of the two energy equations for solid and
fluid phases, derived on the basis of a volume averaging theory. It has been shown that the interstitial
heat transfer between the solid and fluid phases is closely associated with the thermal dispersion. The
resulting expressions for the longitudinal and transverse thermal dispersion conductivities agree well
with available experimental data and empirical correlations.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An effective thermal conductivity of a fluid-saturated porous
medium is composed of stagnant thermal conductivity and ther-
mal dispersion conductivity. For the case of pure heat conduction,
the thermal dispersion conductivity is absent. In such heat conduc-
tion case, it is crucial to estimate the effects of tortuosity on the
stagnant thermal conductivity, since the thermal conductivity of
the solid phase is generally much higher than that of the fluid
phase, and thus, whether the solid is connected or not influences
the heat conduction mode significantly. Thermal dispersion, on
the other hand, is the spreading of heat caused by variations in
fluid velocity about the mean velocity. In addition to the molecular
thermal diffusion, there is significant mechanical dispersion in heat
and fluid flow in a fluid-saturated porous medium, as a result of
hydrodynamic mixing of the fluid particles passing through pores.
This thermal dispersion causes additional heat transfer, which
arises further complications in dealing with transport processes
in fluid-saturated porous media.

Accurate estimation of effective stagnant thermal conductivity
of porous media has been continuously investigated since the pio-
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neering work of Maxwell [1]. Standard treatment of heat conduc-
tion in porous media is based largely on the lumped mixture
model under the assumption of local thermal equilibrium condi-
tion. In this treatment, the problem reduces to the construction
of an appropriate composite model for the estimation of effective
stagnant thermal conductivity. Such attempts include Rayleigh
[2], Deissler and Boegli [3], Kunii and Smith [4], Zehner and Schlun-
der [5], Nozad et al. [6], Sahraouni and Kaviany [7] and Hsu et al.
[8,9]. Hsu et al. [9] introduced a one-dimensional conduction mod-
el based on in-line touching cubes, and carried out an elegant anal-
ysis to show good agreement with the experimental data for the
case of packed beds. As for consolidated porous media, Calmid
and Mahajan [10,11] conducted a comprehensive study on the
effective thermal conductivity of high porosity fibrous metal
foams, introducing a one-dimensional heat conduction model.
They found that their analysis agrees fairly well with the experi-
mental data. Chang [12], on the other hand, developed a compara-
tively simple theoretical model based on combined series and
parallel conduction within fluid saturated wire screens. He con-
cluded that his analytical model provides better accuracy than
the existing correlations. Excellent reviews on this topic may be
found in Kaviany [13] and Hsu [14].

In the first part of this paper, we shall consider macroscopic
heat conduction in porous media in a somewhat more general
way by appealing to a volume averaging procedure [15–17]. We
shall introduce a unit cell model, which consists of rectangular sol-
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Nomenclature

A surface area (m2)
Aint interface between the fluid and solid (m2)
af specific surface area (1/m)
c specific heat (J/kg K)
cp specific heat at constant pressure (J/kg K)
C size of the touching arm (m)
D size of the solid (m)
F, f, g profile functions (–)
H size of the cell (m)
hf interfacial heat transfer coefficient (W/m2 K)
k thermal conductivity (W/m K)
L external scale (m)
nj unit vector pointing outward from the fluid side to solid

side (–)
Pr Prandtl number (–)
q heat flux (W/m2)
Ra;b;c;f ;s thermal resistances

T temperature (K)
V representative elementary volume (m3)
xi Cartesian coordinates (m)
x, y, z Cartesian coordinates (m)
e porosity (–)
g dimensionless vertical coordinate (–)
q density (kg/m3)

Special symbols
~/ deviation from intrinsic average
h/i Darcian average
h/if ;s intrinsic average

Subscripts and superscripts
f fluid
s solid
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ids with connecting arms in an in-line arrangement. This general
model allows us to represent most homogeneous porous media,
which may or may not have directional dependence. Packed beds,
porous foams and wire screens may easily be described by setting
geometrical parameters in the model accordingly. The terms asso-
ciated with the tortuosity in porous media are evaluated, by faith-
fully carrying out surface integrations with respect to the local
temperature over the interface between the solid and fluid phases.

In the second part of this paper, we shall investigate the thermal
dispersion conductivity, which becomes predominant for convec-
tive flows in porous media. According to Wakao and Kaguei [18],
Yagi et al. [19] were the first to measure the effective longitudinal
thermal conductivities of packed bed, taking full account of the ef-
fect of thermal dispersion, and eventually found the longitudinal
component of the dispersion coefficient much greater than its
transverse component. Since the famous analytical treatment in a
tube by Taylor [20], a number of theoretical and experimental ef-
forts (e.g. Aris [21], Koch and Brady [22], Han et al. [23] and Vort-
meyer [24]) were made to establish useful correlations for
estimating the effective thermal conductivities due to thermal dis-
persion (see Kaviany [13]). Furthermore, a series of numerical
experiments were conducted by Kuwahara et al. [25] and Kuwaha-
ra and Nakayama [26], assuming a macroscopically uniform flow
through a lattice of rods, so as to elucidate the effects of micro-
scopic velocity and temperature fields on the thermal dispersion.
It is also worthwhile to mention that Nakayama et al. [27] derived
a thermal dispersion heat flux transport equation from the volume
averaged version of Navier–Stokes and energy equations and
showed that it naturally reduces to an algebraic expression for
the effective thermal conductivity based on a gradient-type diffu-
sion hypothesis.

In this paper, we shall revisit the volume average version of the
two energy equations for solid and fluid phases, derived on the ba-
sis of the volume averaging theory [28]. We shall follow the defini-
tion of thermal dispersion heat flux to evaluate the longitudinal
and transverse components of the thermal dispersion conductivity,
exploiting the derived two energy equations. It will be shown that
the interstitial heat transfer is closely linked with the thermal dis-
persion phenomena. A general expression will be derived using the
inter-relationship found between the interstitial heat transfer and
thermal dispersion. The validity of general expressions for both
stagnant thermal conductivity and thermal dispersion conductivity
will be confirmed comparing the present results with available
experimental and theoretical data.
2. Macroscopic energy equations

We shall consider the energy equation for the fluid phase and
that for the solid matrix phase as follows:

For the fluid phase:

qf cpf

@T
@t
þ qf cpf

@

@xj
ujT ¼

@

@xj
kf
@T
@xj

� �
ð1Þ

For the matrix phase:

qscs
@T
@t
¼ @

@xj
ks
@T
@xj

� �
ð2Þ

where the subscripts f and s stand for the fluid phase and solid
phase, respectively. In order to obtain the macroscopic energy equa-
tion for fluid-saturated porous media, we take a control volume V
within in the medium, whose length scale V1=3 is much smaller than
the macroscopic characteristic length, but, at the same time, much
greater than the structural characteristic length (see e.g. Nakayama
[15]). Under this condition, the volume average of a certain variable
/ in the fluid phase is defined as

h/if � 1
Vf

Z
Vf

/dV ð3Þ

where Vf is the volume space which the fluid phase occupies. The
porosity e � Vf =V is the volume fraction of the fluid space. Follow-
ing Nakayama [15], Cheng [16], Quintard and Whitaker [17] and
many others, we decompose a variable / into its intrinsic average
and the spatial deviation from it:

/ ¼ h/if þ ~/ ð4Þ

We shall exploit the following spatial average relationships:

h/1/2i
f ¼ h/1i

f h/2i
f þ h~/1

~/2if ð5Þ
@/
@xi

� �f

¼ 1
e
@eh/if

@xi
þ 1

Vf

Z
Aint

/ni dA ð6Þ

where Aint is the local interfacial area between the fluid and solid
matrix, while ni is the unit vector pointing outward from the fluid
side to solid side. Similar relationships hold for the solid phase,
whose intrinsic average is defined as

h/is � 1
Vs

Z
Vs

/dV ð7Þ



Fig. 1. Unit cell model.
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Upon integrating Eqs. (1) and (2) over the local control volume with
help of the foregoing relationships, we obtain the volume averaged
set of the energy equations as follows [28]:

For the fluid phase:

qf cpf
e
@hTif

@t
þ qf cpf

e
@hujif hTif

@xj
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For the solid matrix phase:

qscsð1� eÞ @hTi
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where hTif is the intrinsic average of the fluid temperature, while
hTis is the intrinsic average of the solid matrix temperature. Obvi-
ously, the parenthetical terms on the right hand side of Eq. (8) de-
note the diffusive heat transfer, while the last term describes the
interfacial heat transfer between the solid and fluid phases. We
combine the foregoing two energy equations to obtain a single mac-
roscopic equation as follows:
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where we exploited the continuity of temperature and heat flux at
the interface. Further assuming that the local thermal equilibrium
condition holds between both phases, namely, hTif ¼ hTis ¼ hTi,
the equation reduces to

ðeqf cpf
þ ð1� eÞqscsÞ
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where

h/i � 1
V

Z
V

/dV ð12Þ

is the Darcian average of the variable / such that huji ¼ ehujif is the
Darcian velocity vector. Thus, we find the macroscopic heat flux
vector qj and its corresponding total effective thermal conductivity
tensor ktotalij as follows:

qi¼�ktotalij

@hTi
@xj

¼�ðekf þð1�eÞksÞ
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The last term in the rightmost expression describes the thermal dis-
persion term, while the second associated with the surface integral
describes the effects of the tortuosity on the macroscopic heat flux.
Note that the first term in the expression corresponds to the upper
bound of the effective stagnant thermal conductivity based on the
parallel model, namely, ðekf þ ð1� eÞksÞdij. Thus, it is the tortuosity
term (i.e. the second term) that adjusts the level of the effective
stagnant thermal conductivity from its upper bound to a correct
one.
3. Unit cell model and effective stagnant thermal conductivity

The present unit cell model of rectangular solid is illustrated in
Fig. 1. We assume that an infinite number of these rectangular sol-
ids are arranged in a regular fashion. The dimensions of the unit
cell and rectangular solid are indicated as ðHx; Hy; HzÞ and
ðDx; Dy; DzÞ, respectively, while the sizes of touching arms of
square crosssection are denoted by ðCx; Cy; CzÞ, respectively.

We shall apply Eq. (13) to this unit model so as to find out the
effective stagnant thermal conductivity. The axial component of
the surface integral term in the second term in the rightmost
expression in Eq. (13) may be estimated as follows:
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Upon noting that ni is the unit vector pointing outward from the
fluid side to solid side, we considered the two distinctive control
volumes, namely, C.V.1 and C.V.2, as shown in Fig. 2, with their cor-
responding weights, to evaluate the volume average of the surface
integral term associated with the interfacial temperatures.

The temperature differences between the opposing interfaces
may be estimated considering the heat currents, namely,



Fig. 3. Thermal circuit.

Fig. 2. Two distinctive control volumes for the surface integral.
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Q ax ; Qbx ; Q cx ; Q sx and Qfx , as indicated in Fig. 1, and their corre-
sponding thermal circuits as shown in Fig. 3, such that
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where
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The other temperature differences may be evaluated likewise.
Substituting these temperature differences into Eq. (14), we

find
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The foregoing expressions are substituted into the definition of the
macroscopic heat flux, namely, Eq. (13) without the dispersion
term, to find
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Upon solving for the macroscopic heat flux qx, we have
qx ¼ �kstagxx
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which gives the effective stagnant thermal conductivity as follows:
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Likewise,

kstagyy
¼ ekf þ ð1� eÞks

1þ ðkf�ksÞ2

kskf

1
Ray

1�Dy
Hy

� �
Dy
Hy
þ 1

Rby
1�Cz

Hy

� �
Cz
Hy
þ 1

Rcy
1�Cx

Hy

� �
Cx
Hy

1
Ray
þ 1

Rsy
þ 1

Rby
þ 1

Rcy
þ 1

Rfy

ð20bÞ

kstagzz
¼ ekf þ ð1� eÞks

1þ ðkf�ksÞ2

kskf

1
Raz

1�Dz
Hzð ÞDz

Hz
þ 1

Rbz
1�Cx

Hzð ÞCx
Hz
þ 1

Rcz
1�Cy

Hz

	 

Cy
Hz

1
Raz
þ 1

Rsz
þ 1

Rbz
þ 1

Rcz
þ 1

Rfz

ð20cÞ

The set of Eq. (16) should be used with cyclic permutation to obtain
the resistances Ray to Rfz in Eqs. (20b) and (20c). Moreover, the
porosity of the unit cell of rectangular solid may be evaluated from

e ¼
HxHyHz � DxDyDz � C2

x ðHx � DxÞ � C2
yðHy � DyÞ � C2

z ðHz � DzÞ
HxHyHz

ð21Þ
4. Validation of the expression for stagnant thermal
conductivity

In order to examine the generality acquired in our mathemati-
cal model for estimating the effective stagnant thermal conductiv-
ity, we shall apply our model to evaluate the effective stagnant
thermal conductivities of various porous media, such as packed
beds, metal foams and wire screens.

4.1. Packed beds

Hsu et al. [9] introduced a unit cell model of touching cubes in a
regular arrangement and carried out a lumped mixture model
analysis and predicted the effective stagnant thermal conductivity
of the packed beds. They showed that their model of cubes in a reg-
ular arrangement is a rational model to describe heat transfer in
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the packed beds. Albeit the difference in its appearance, our gen-
eral expression based on the volume averaging theory, when ap-
plied to their geometry, turns out to be mathematically identical
to their expression based on the lumped mixture model. Thus, as
for the first example, we shall predict the effective stagnant ther-
mal conductivity of the packed beds. The geometrical parameters
for the packed beds may be set following Hsu et al. [9]:

Hx ¼ Hy ¼ Hz ¼ H; Dx ¼ Dy ¼ Dz ¼ D;

Cx ¼ Cy ¼ Cz ¼ C ¼ 0:13D ð22aÞ

e ¼ 1� D
H

� �3

� 3� 0:132 D
H

� �2

1� D
H

� �
¼ 0:36 ð22bÞ

We have approximated the collection of the spherical particles in
the packed bed by the collection of the cubes with touching arms
of square cross section. Note that its porosity ðe ¼ 0:36Þ is set to
the same as that of their packed beds. Eq. (22a) together with
(22b) gives

D=H ¼ 0:86 and C=H ¼ 0:11 ð23Þ

As we substitute foregoing values into Eq. (20a), the ratio of the
effective stagnant thermal conductivity kstagxx

=kf may readily be
evaluated for each value of the solid to fluid thermal conductivity
ratio, ks=kf . Such a curve showing kstagxx

=kf is generated from Eq.
(20a) and plotted in Fig. 4 along with the experimental data of Noz-
ad et al. [6] for the case of the packed beds. The prediction follows
the experimental data closely over a wide range of the thermal con-
ductivity ratio. Note that the size ratio of the touching arm to the
rectangular solid, namely, C/D, accounts for the contact resistance
between the particles. Naturally, the resulting stagnant thermal
conductivity is fairly sensitive to the ratio C/D. Empirical informa-
tion on the contact resistance is needed to set the ratio.

4.2. Metal foams

Our general set of Eqs. (20) can also be used for evaluating the
effective stagnant thermal conductivities of high porosity metal
foams. In reality, the structure of metal foams is quite complex.
Therefore, it may not be practical to describe all details of the
structure accurately. Calmid and Mahajan [10] approximated such
a complex structure, introducing a hexagonal structure of metal
foam matrix. In this way, they were able to obtain the expression
for the effective stagnant thermal conductivity exploiting a one-
dimensional heat conduction concept. Their prediction agrees very
well with available experimental data. Alternatively, we may apply
Fig. 4. Effective stagnant thermal conductivity of packed beds.
our general model to high porosity metal foams, by setting the geo-
metrical parameters as

Hx ¼ Hy ¼ Hz ¼ H; Dx ¼ Dy ¼ Dz ¼ Cx ¼ Cy ¼ Cz ¼ D ð24aÞ

e ¼ 1� 3
D
H

� �2

þ 2
D
H

� �3

ð24bÞ

Note that the metal foam structure was approximated by a unit cu-
bic cell structure according to Eq. (24a), and that the porosity was
set equal to that of the corresponding metal form. Eq. (24b) for
the porosity of the unit cubic cell may readily be derived as we sub-
tract the square rod volume per unit ð3ðH � DÞD2 þ D3Þ from the
unit volume H3 to obtain the space occupied by the fluid per unit
cell, then divided it by H3.

In Fig. 5, our prediction based on Eq. (20a) is shown along with
Calmid–Mahajan expression based their hexagonal model [10] for
ks=kf ¼ 357 and 8226, over the porosity range from 0.90 to 0.98. As
can be seen from the figure, both predictions agree with the exper-
imental data very well.

4.3. Wire screens

As for the third example, we shall consider wire screens and ap-
ply our general model to estimate their effective stagnant thermal
conductivities. A multiple layer of square-mesh standard wire
screens is depicted in Fig. 6.

The multiple layers of wire screens of this kind are often used
for heat pipe applications. Thus, it is essential to estimate the effec-
tive thermal conductivity of wire screens, as we use them for
various heat transfer applications. Chang [12] proposed a compar-
atively simple theoretical model based on combined series and
parallel conduction and showed that his equation gives fairly good
agreement with available experimental data. Our general Eq. (20a)
may also be applied for this case, in order to estimate the effective
thermal conductivity of the multiple layers of wire screens. A care-
ful observation of the cross section of the wire screen, as shown in
Fig. 6 prompts us to set the geometrical parameters as follows:

Hx ¼ Hy ¼ Hz ¼ H; Dx=2 ¼ Dy ¼ Dz ¼ D;

Cx ¼ 0:032D; Cy ¼ D; Cz ¼ D ð25aÞ

e ¼ 1� 2
D
H

� �3

� 0:0322 D
H

� �2

1� 2
D
H

� �
� 2

D
H

� �2

1� D
H

� �
¼ 0:70

ð25bÞ

such that D=H ¼ 0:39. We estimated the touching area as
Cx ¼ 0:032D for a multiple layers of wire screens.
Fig. 5. Effective stagnant thermal conductivity of metal foams.



Fig. 7. Effective stagnant thermal conductivity of a multiple layer of wire screens.

Fig. 6. Schematic views of wire screens.
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Note that the wire screen structure was approximated by a unit
cell structure of a rectangular prism 2D� D� D with four thick
arms D� D� ðH � DÞ=2 and two thin arms 0:032D� 0:032D
�ðH � 2DÞ=2 as given by Eq. (25a), and that the porosity was set
equal to that of the corresponding wire screens. Eq. (25b) for the
porosity of the unit cell may be derived as we subtract the solid
volume per unit 2D3 þ 0:0322D2ðH � 2DÞ þ 2D2ðH � DÞ from the
unit volume H3 to obtain the space occupied by the fluid per unit
cell, then divided it by H3.

Our prediction based on the general Eq. (20a) is illustrated in
Fig. 7, which indicates fairly good agreement among our predic-
tion, Chang’s prediction and the experimental data of the wire
screens reported by VanSant and Malet [29]. This suggests that
our general set of Eqs. (20) is valid even for the prediction of effec-
tive stagnant thermal conductivity tensors in anisotropic porous
media.
5. Expressions for thermal dispersion conductivity

Even when the local thermal equilibrium holds at the macro-
scopic scale, the interstitial heat transfer takes place between the
solid and fluid phases. In other words, the interface at the pore
scale is never at local thermal equilibrium. In fact, it is this interfa-
cial heat transfer at the local non-thermal equilibrium that controls
the spatial distribution of the temperature at the pore scale and
thus the thermal dispersion activities.

Upon introducing the interstitial heat transfer coefficient hf and
the effective porosity tensor, e�ij, as function of the stagnant thermal

conductivity tensor, kstagij
¼ kstagxx

ð i
 
;~iÞ þ kstagyy

ð~j;~jÞ þ kstagzz
ð~k;~kÞ, the

two energy equations (8) and (9) may be rewritten, as follows:
For the fluid phase:

qf cpf
e
@hTif

@t
þ qf cpf

@hujihTif

@xj
¼ @

@xj
ðe�jkkf þ ekdisjk

Þ @hTi
f

@xk

� af hf hTif � hTis
� �

ð26Þ

For the solid matrix phase:

qf cpf
ð1� eÞ @hTi

s

@t
¼ @

@xj
ðdjk � e�jkÞks

@hTis

@xk

� �
� af hf ðhTis � hTif Þ

ð27Þ

where the effective porosity tensor is defined as

e�jk ¼ edjk þ
ðekf þ ð1� eÞksÞdjk � kstagjk

ks � kf
ð28Þ

such that e�jkkf þ ðdjk � e�jkÞks ¼ kstagjk
, while the dispersion thermal

conductivity tensor is defined by

�qf cpf
h~uj
eT if ¼ kdiskj

@hTif

@xk
ð29Þ

Moreover, the interstitial heat transfer between the fluid and solid
phases is modeled according to Newton’s cooling law as

1
V

Z
Aint

kf
@T
@xj

nj dA ¼ �af hf hTif � hTis
� �

ð30Þ

where af and hf are the specific surface area and interfacial heat
transfer coefficient, respectively.

5.1. Longitudinal thermal dispersion conductivity

The energy Eq. (26) at the steady state may be written along the
macroscopic flow direction x as follows:

qf cpf
hui @hTi

f

@x
¼ �af hf ðhTif � hTisÞ ð31Þ

We have dropped the diffusion term, since the convection term on
the left hand side predominates over the diffusion term, as the ther-
mal dispersion becomes appreciable. A magnitude analysis reveals
that the diffusive term in Eq. (26) may be neglected when the Peclet
number based on an external scale L and dispersion thermal con-
ductivity kdis, namely, qf cpf

huiL=kdis, is sufficiently large. As will be
shown later (see Eq. (46)), we have kdis � qf cpf

huiD for convective
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flows. Hence, qf cpf
huiL=kdis � L=D� 1 and Eq. (31) may readily be

satisfied for most convective flow cases. Exploiting the foregoing
equation, the longitudinal thermal dispersion term may be evalu-
ated as follows:

�qf cpf
h~ueT if ¼ �qf cpf

huif ðhTif � hTisÞhðf � 1Þðg � 1Þif

¼
ðqf cpf

huiÞ2

eaf hf
hðf � 1Þðg � 1Þif @hTi

f

@x
ð32Þ

Hence,

kdisxx ¼
ðqf cpf

huiÞ2

eaf hf
hðf � 1Þðg � 1Þif ð33Þ

where

u ¼ huif f ðgÞ ð34aÞ

and

T � hTis ¼ ðhTif � hTisÞgðgÞ ð34bÞ

We shall consider a convective flow through cubes in a regular
arrangement as shown in Fig. 8, where the dimensionless coordi-
nate g is defined as

g ¼ 2y=ðH � DÞ ð35Þ

The cubes are assumed to have no touching arms, since the effects
of such arms on the thermal dispersion may be negligibly small for
packed beds of our interest. For the first approximation, we may as-
sume the following profile functions describing the laminar fully
developed velocity and temperature profiles:

f ðgÞ ¼ 3
2
ð1� g2Þ ð36aÞ

and

gðgÞ ¼ 5
16
ð5� 6g2 þ g4Þ ð36bÞ

Noting that h/if ¼ 1
2

R 1
�1 /dg such that hf if ¼ hgif ¼ 1, and substitut-

ing the foregoing profiles into (33), we readily obtain

kdisxx

kf
¼ 3

14
ðqf cpf

huiÞ2

eaf hf kf
¼ 1

28eð1� eÞ
Pe2

D
hf D
kf

� � ð37Þ

where PeD ¼ qf cpf huiD=kf is Peclet number based on the Darcian
velocity and particle diameter. Note also af ¼ 6ð1� eÞ=D for spher-
ical particles of size D. Assuming e ¼ 0:4 and using Wakao and
Fig. 8. Cubes in a regular arrangement and pr
Kaguei’s empirical equation [18] for the interstitial heat transfer
coefficient for packed beds, namely,

hf D
kf
¼ 2:0þ 1:1Pe0:6

D =Pr0:27 ð38Þ

we obtain the longitudinal thermal dispersion in the laminar
regime as follows:

kdisxx

kf
¼ 0:15

Pe2
D

2:0þ 1:1Pe0:6
D =Pr0:27 : Laminar regime ð39Þ

The foregoing equation gives kdisxx / Pe2
D for small Peclet number,

which is consistent with Taylor and Aris analysis [20,21]. The equa-
tion also implies the existence of the transition regime from laminar
to turbulent, in which we have kdisxx / Pe1:4

D .
A similar procedure can be taken to estimate the longitudinal

thermal dispersion for the case of fully turbulent flow, using the
wall laws as

u ¼ us
1
j

ln nþ þ B
� �

ð40Þ

and

T � hTis ¼ � qwrT

usqf cpf

1
j

ln nþ þ A
� �

ð41Þ

where us and qw are the friction velocity and wall heat flux, respec-
tively, and nþ ¼ usn=mf is the dimensionless distance measured
from the wall surface ðn ¼ H�D

2 � yÞ. j is the von-Karman constant
while both B and A are the empirical constants. It is easy to find

~u ¼ us

j
ðln fþ 1Þ ð42Þ

and

eT ¼ � qwrT

usqf cpf j
ðln fþ 1Þ ð43Þ

where

f ¼ 1� g ð44Þ

Using these profile functions (42) and (43), we have

�qf cpf
h~uj
eT if ¼ rT qw

j2 hðln fþ 1Þ2if ¼ rT qw

j2 ¼
rTqf cpf

hui
j2af

@hTif

@x
ð45Þ

where we used Eq. (31) to eliminate qw ¼ �hf ðhTif � hTisÞ in favor of
the temperature gradient. Setting j and rT to 0.41 and 0.9, respec-
evailing velocity and temperature fields.



Fig. 9. Longitudinal effective thermal conductivity of packed beds.

Fig. 10. Transverse effective thermal conductivity of packed beds.
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tively, according to Launder and Spalding [30], we obtain for the
turbulent regime:

kdisxx

kf
¼

rTqf cpf
hui

j2af kf
¼ rT

6ð1� eÞj2 PeD ¼ 1:5PeD : Turbulent regime

ð46Þ
Thus, the thermal dispersion conductivity increases in proportion to
Peclet number for the turbulent regime. It should be noted that, for
the case of turbulent flow, the turbulence thermal conductivity
should be added in addition to the thermal dispersion conductivity.
However, the recent study of Nakayama and Kuwahara [31] gives
kturb=kf ¼ 0:0233PeD=ð1� eÞ for the case of packed beds, which is
much smaller than the dispersion thermal conductivity, and thus,
can be dropped for the first approximation.

5.2. Transverse thermal dispersion conductivity

The transverse thermal dispersion must be taken into account
correctly, when we evaluate the heat transfer from the bounding
wall. Let us consider the energy Eq. (26) close enough to the solid
surface for the convection to be negligible, but sufficiently away
from the solid surface, such that the transverse thermal dispersion
dominates over the stagnant thermal diffusion:

ekdisyy

d2hTif

dy2 ¼ af hf ðhTif � hTisÞ ð47Þ

A magnitude analysis reveals that the convection terms in Eq. (26)
vanish near the wall due to no-slip conditions and at the same time
that transverse diffusion overwhelms the longitudinal one for
ðL=dÞ2 � ðL=DÞ2 � 1 where d is the thermal boundary layer thick-
ness. Hence, Eq. (47) may be satisfied for most near wall flow cases.
Upon assuming hTif ¼ hTis at infinity, we integrate the foregoing
equation and obtain

dhTif

dy
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
af hf

ekdisyy

s
ðhTif � hTisÞ ð48Þ

Thus, the transverse thermal dispersion term may be evaluated as
follows:

�qf cpf
h~veT if ¼ �qf cpf

huif ðhTif � hTisÞhFðg � 1Þif

¼ qf cpf
huif

ffiffiffiffiffiffiffiffiffiffiffiffi
ekdisyy

af hf

s
hFðg � 1Þif dhTif

dy
ð49Þ

Hence,

kdisyy ¼
ðqf cpf

huiÞ2

eaf hf
ðhFðg � 1Þif Þ2 ð50Þ

where

~v ¼ huif FðgÞ ð51Þ

such that hFif ¼ 0. It is interesting to note that Eq. (50) obtained for
the transverse thermal dispersion conductivity is identical to Eq.
(33) obtained for the longitudinal thermal dispersion conductivity,
except the difference in the multiplicative constants, namely,

ðhFðg � 1Þif Þ2 and hðf � 1Þðg � 1Þif . Fried and Combarnous’ experi-

mental data [32] suggest that hðf � 1Þðg � 1Þif is about 20 times lar-

ger than ðhFðg � 1Þif Þ2 such that we propose the following
equations:

kdisyy

kf
¼ 0:0075

Pe2
D

2þ 1:1Pe0:6
D =Pr0:27 : Laminar regime ð52Þ

kdisyy

kf
¼ 0:075PeD : Turbulent regime ð53Þ
6. Validation of the expressions for longitudinal and transverse
thermal dispersion conductivities

In Fig. 9, our results for the case of packed beds are presented in
terms of the ratio of the total longitudinal effective thermal con-
ductivity to the fluid thermal conductivity, namely,

ktotalxx

kf
¼ kstagxx

þ ekdisxx

kf
ð54Þ

The present results obtained for the cases of (Pr, ks=kf ) = (0.71,
53.28) and (7.02, 2.30) are compared with the experimental data re-
ported by Fried and Combarnous [31] and the empirical equation
ekdisxx=kf ¼ 0:5PeD proposed by Wakao and Kaguei [18] for high Pec-
let number. The stagnant thermal conductivity kstag was evaluated
using the general Eq. (20a) along with Eqs. (22a) and (22b), which
was also added to their experimental data to show the total longi-
tudinal effective thermal conductivity. Fairly good agreement can
be seen between the present correlation and the experimental data.

Likewise, the correlations established for the transverse thermal
dispersion conductivity are presented along with the experimental
data reported by Fried and Combarnous [31] for the transverse
thermal dispersion conductivity. The present expressions appear
to be in good accord with the experimental data (see Fig. 10).
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The foregoing comparison suggests that the present expressions
for both longitudinal and transverse thermal conductivities are va-
lid for the packed beds. The present expressions as function of the
interstitial heat transfer coefficient is quite general, in the sense
that they can be applied for other porous media as their correla-
tions for the interstitial heat transfer coefficient are available.

7. Conclusions

A volume averaging theory was exploited to evaluate both stag-
nant thermal conductivity and thermal dispersion conductivity
within porous media. For the stagnant thermal conductivity, a gen-
eral unit cell model, consisting of rectangular solids with connect-
ing arms in an in-line arrangement, was proposed to describe most
homogeneous porous media. The resulting expression for the stag-
nant thermal conductivity has been validated by comparing the
present results with available experimental and theoretical data
for packed beds, porous foams and wire screens. As for the thermal
dispersion conductivity, a general expression has been derived
with help of the two energy equations for solid and fluid phases.
It has been revealed that the interfacial heat transfer at the local
non-thermal equilibrium controls the spatial distribution of the
macroscopic temperature and thus the thermal dispersion activi-
ties. The resulting expressions for the longitudinal and transverse
thermal dispersion conductivities agree well with available exper-
imental data and empirical correlations.

Acknowledgements

The authors express their sincere thanks to Prof. W. Liu of Huaz-
hong University of Science and Technology for supporting this study.
This work has been partially supported by the National Key Basic Re-
search Development Program of China (2007CB 206903).

References

[1] J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford,
1873. p. 365.

[2] L. Rayleigh, On the influence of obstacles arranged in rectangular order upon
on the properties of a medium, Philos. Mag. 56 (1892) 481–502.

[3] R.G. Deissler, J.S. Boegli, An investigation of effective thermal conductivities of
powders in various gases, ASME Trans. 80 (1958) 1417–1425.

[4] D. Kunii, J.M. Smith, Heat transfer characteristics of porous rocks, AIChE J. 6
(1960) 71–78.

[5] P. Zehner, E.U. Schlunder, Thermal conductivity of granular material at
moderate temperatures, Chem. Ing. Tech. 42 (1970) 933–941.

[6] S. Nozad, R.G. Carbonell, S. Whitaker, Heat conduction in multiphase systems,
I: theory and experiments for two-phase systems, Chem. Eng. Sci. 40 (1985)
843–855.
[7] M. Sahraouni, M. Kaviany, Slip and non-slip temperature boundary conditions
at interface of porous, plain media: conduction, Int. J. Heat Mass Transfer 36
(1993) 1019–1033.

[8] C.T. Hsu, P. Cheng, K.W. Wong, Modified Zehner–Schlunder models for
stagnant thermal conductivity of porous media, Int. J. Heat Mass Transfer 37
(1994) 2751–2759.

[9] C.T. Hsu, P. Cheng, K.W. Wong, A lumped parameter model for stagnant
thermal conductivity of spatially periodic porous media, ASME Trans. J. Heat
Transfer 117 (1995) 264–269.

[10] V.V. Calmid, R.L. Mahajan, The effective thermal conductivity of high porosity
fibrous metal foams, ASME Trans. J. Heat Transfer 121 (1999) 466–471.

[11] V.V. Calmid, R.L. Mahajan, Forced convection in high porosity metal foams,
ASME Trans. J. Heat Transfer 122 (2000) 557–565.

[12] W.S. Chang, Porosity and effective thermal conductivity of wire screens, ASME
Trans. J. Heat Transfer 112 (1990) 5–9.

[13] M. Kaviany, Principles of Heat Transfer in Porous Media, Springer-Verlag, New
York, 1991. pp. 115–151.

[14] C.T. Hsu, Heat conduction in porous media, in: K. Vafai (Ed.), Handbook of
Porous Media, Marcel Dekker, Inc., New York, 2000, pp. 171–200.

[15] A. Nakayama, PC-Aided Numerical Heat Transfer and Convective Flow, CRC
Press, Boca Raton, 1995.

[16] P. Cheng, Heat transfer in geothermal systems, Adv. Heat Transfer 14 (1978) 1–
105.

[17] M. Quintard, S. Whitaker, One and two equation models for transient diffusion
processes in two-phase systems, Adv. Heat Transfer 23 (1993) 369–465.

[18] N. Wakao, S. Kaguei, Heat and Mass Transfer in Packed Beds, Gordon and
Breach, New York, 1996.

[19] S. Yagi, D. Kunii, N. Wakao, Studies on axial effective thermal conductivities in
packed beds, AIChE J. 6 (1960) 543–546.

[20] G. Taylor, Dispersion of solute matter in solvent flowing slowly through a tube,
Proc. R. Soc. Lond. 15 (1953) 1787–1806.

[21] R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proc. R.
Soc. Lond. 235 (1956) 67–77.

[22] D.L. Koch, J.F. Brady, Dispersion in fixed beds, J. Fluid Mech. 154 (1985) 399–
427.

[23] N.W. Han, J. Bhakta, R.G. Carbonell, Longitudinal and lateral dispersion in
packed beds: effect of column length and particle size distribution, AIChE J. 31
(1985) 277–288.

[24] D. Vortmeyer, Axial heat dispersion in packed beds, Chem. Eng. Sci. 30 (1975)
999–1001.

[25] F. Kuwahara, A. Nakayama, H. Koyama, A numerical study of thermal
dispersion in porous media, Trans. ASME J. Heat Transfer 118 (1996) 756–761.

[26] F. Kuwahara, A. Nakayama, Numerical determination of thermal dispersion
coefficients using a periodic porous structure, Trans. ASME J. Heat Transfer 121
(1999) 160–163.

[27] A. Nakayama, F. Kuwahara, Y. Kodama, An equation for thermal dispersion flux
transport and its mathematical modelling for heat and fluid flow in a porous
medium, J. Fluid Mech. 563 (2006) 81–96.

[28] A. Nakayama, F. Kuwahara, M. Sugiyama, G.L. Xu, A two-energy equation
model for conduction and convection in porous media, Int. J. Heat Mass
Transfer 44 (2001) 4375–4379.

[29] J.H. VanSant, J.R. Malet, Thermal conductivity of some heat pipe wicks, Lett.
Heat Mass Transfer 2 (1975) 199–206.

[30] B.E. Launder, D.B. Spalding, The numerical computation of turbulent flow,
Comput. Methods Appl. Mech. Eng. 3 (1974) 269–289.

[31] A. Nakayama, F. Kuwahara, A general macroscopic turbulence model for flows
in packed beds, channels, pipes and rod bundles, J. Fluids Eng. 130 (2008).
101205-1–101205-7.

[32] J.J. Fried, M.A. Combarnous, Dispersion in porous media, Adv. Hydrosci. 7
(1971) 169–282.


	A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media
	Introduction
	Macroscopic energy equations
	Unit cell model and effective stagnant thermal conductivity
	Validation of the expression for stagnant thermal conductivity
	Packed beds
	Metal foams
	Wire screens

	Expressions for thermal dispersion conductivity
	Longitudinal thermal dispersion conductivity
	Transverse thermal dispersion conductivity

	Validation of the expressions for longitudinal and transverse thermal dispersion conductivities
	Conclusions
	Acknowledgements
	References


