1 Introduction

There are two kinds of models to investigate thermal behavior of conduction and convection within a porous medium, namely, the so-called thermal equilibrium (single phase) model and thermal nonequilibrium (two phase) model. The local thermal equilibrium between the solid and fluid phases is assumed in the thermal equilibrium model, whereas no such assumption is assumed in the thermal nonequilibrium model. They are also called as one energy equation model and two energy equation model, respectively, since the thermal equilibrium model (which assumes that the temperatures of two phases are equal) deals only one energy equation, while the thermal nonequilibrium model (which allows the solid temperature to differ from the fluid temperature) retains two individual energy equations for the two phases.

One equation models based on the local thermal equilibrium assumption have been widely used in modeling transport phenomena in porous media, and have been proven to be quite effective for many cases of steady heat transfer without internal heat generation [1-4]. However, Quintard [5] and Quintard and Whitaker [6,7] pointed out that there are many physical situations in which the local thermal equilibrium assumption fails, and recommended use of a two energy equation model. The validity and assessment of the local thermal equilibrium assumptions were discussed by a substantial number of researchers, including Minkowycz et al. [8], Kim and Jang [9], Kiwana and Al-Nimir [10], Al-Nimir and Abu-Hijleh [11], Abu-Hijleh et al. [12], Khaskan et al. [13], Khaskan and Al-Nimir [14], and Haddad et al. [15].

There exist analytical investigations in which the exact solutions based on the local thermal equilibrium assumption have been examined by comparing the results against those based on a two equation model. Nakayama et al. [1] used the two energy equation model introduced by Hsu [16] and Hsu et al. [17], and obtained exact solutions for two fundamental steady heat transfer cases, namely, one-dimensional steady heat conduction in a porous slab with internal heat generation, and also thermally developing unidirectional flow through a semi-infinite porous medium. They pointed out that the thermal equilibrium assumption ceases to be valid even for certain steady thermal problems. Haddad et al. [15], on the other hand, treated free convection from a vertical plate embedded in a porous medium, and pointed out that the assumption of local thermal equilibrium may fail when the Rayleigh number is sufficiently high. Furthermore, Kuznetsov [19,20] was also able to present perturbation solutions for thermal nonequilibrium problems associated with sensible heat storage packed beds.

Many investigators, who worked on two energy equation models, neglected the effects of tortuosity on the stagnant thermal conductivity, and simply evaluated the fluid phase thermal conductivity as a product of the porosity and its thermal conductivity, and likewise for the solid phase thermal conductivity. Such evaluations lead to significant errors in thermal conduction especially when the solid thermal conductivity is much higher than the fluid thermal conductivity, such as in the case of metal foams.

In this study, first, we shall propose an effective porosity concept to establish a two energy equation model, and derive a set of the volume averaged energy equations, which accounts for the tortuosity as well as the thermal dispersion. An aluminum foam and air combination is considered for illustration of effective thermal conductivities with sensible heat storage packed beds.
For the time being, let us assume $\partial(T^f)/\partial x_j \cong \partial(T^s)/\partial x_j$. Then, the equation reduces to

$$
(\varepsilon \rho_f c_p)^{\varepsilon^s} \frac{\partial (T^f)}{\partial t} + \rho_f c_p \frac{\partial (u_i)^f}{\partial x_j} = \frac{\partial}{\partial x_j} \left(e k_f (1-\varepsilon) k_i \frac{\partial (T^f)}{\partial x_j} \right) + \frac{k_f - k_i}{V} \int_{A_{ns}} T_{nj} dA - \varepsilon \rho_f c_p \langle \ddot{u}_i \ddot{T}^f \rangle
$$

where

$$
\langle \phi \rangle \equiv \frac{1}{V_f} \int_{V_f} \phi dV
$$

is the Darcian average of the variable ϕ such that $\langle u_i \rangle = \varepsilon (u_i)$ is the Darcian velocity vector. From the foregoing Eq. (4), the macroscopic heat flux vector $q_i = (q_1, q_2, q_3)$ and its corresponding stagnant thermal conductivity k_{stag} may be defined as follows:

$$
q_i = -k_{stag} \frac{\partial (T^f)}{\partial x_i} + \varepsilon \rho_f c_p \langle \ddot{u}_i \ddot{T}^f \rangle = -(e k_f + (1-\varepsilon) k_i) \frac{\partial (T^f)}{\partial x_i} - \frac{k_f - k_i}{V} \int_{A_{ns}} T_{nj} dA + \varepsilon \rho_f c_p \langle \ddot{u}_i \ddot{T}^f \rangle
$$

The last term in the rightmost expression describes the thermal dispersion term, which describes an additional heat flux resulting from the hydrodynamic mixing due to the presence of obstacles, while the second term associated with the surface integral describes the effects of the tortuosity on the macroscopic heat flux. Note that the first term of the rightmost expression corresponds to the upper bound of the effective stagnant thermal conductivity based on the parallel model, namely, $(e k_f + (1-\varepsilon) k_i)$. Thus, it is the tortuosity term (i.e., the second term) that adjusts the level of the effective stagnant thermal conductivity from its upper bound to a correct one. The effective porosity ε^e may be defined such that the stagnant thermal conductivity is given by

$$
k_{stag} = \varepsilon^e k_f + (1-\varepsilon^e) k_i
$$

namely

$$
\varepsilon^e = \frac{k_s - k_{stag}}{k_s - k_f} = 1 + \frac{e k_f + (1-\varepsilon) k_i - k_{stag}}{k_s - k_f}
$$

such that

$$
\langle \varepsilon^e \rangle = \frac{1}{V_f} \int_{V_f} T_{nj} dA
$$

The stagnant thermal conductivity k_{stag} is given experimentally, or, it can be estimated using some empirical and theoretical expressions. We shall discuss such expressions shortly. Using the effective porosity ε^e, the energy Eqs. (1) and (2) may be rewritten concisely as follows:

For the fluid phase

$$
\rho_f c_p \varepsilon^e \frac{\partial (T^f)}{\partial t} + \rho_f c_p \frac{\partial (u_i)^f}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\varepsilon^e k_f \frac{\partial (T^f)}{\partial x_j} + e k_f \frac{\partial (T^f)}{\partial x_k} \right) - h_i \langle (T^f)^s \rangle
$$

For the solid matrix phase

$$
\rho_s c_s (1-\varepsilon) \frac{\partial (T^s)}{\partial t} = \frac{\partial}{\partial x_j} \left((1-\varepsilon) k_i \frac{\partial (T^s)}{\partial x_j} \right) - h_i \langle (T^s)^s \rangle
$$
where the thermal dispersion term is modeled according to the gradient diffusion hypothesis [24]

$$-\rho C_v \langle \tilde{u}_f \tilde{T} \rangle = k_{stag} \frac{\partial \langle \tilde{T} \rangle}{\partial \tilde{x}_i}$$ \hspace{1cm} (11)$$

while the interfacial heat transfer between the solid and fluid phases is modeled using Newton’s cooling law

$$\frac{1}{V} \int_{A_{\text{surf}}} k_f \frac{\partial \tilde{T}}{\partial \tilde{x}_i} n_i dA = h_i \langle \tilde{T} \rangle$$ \hspace{1cm} (12)$$

where h_i is the volumetric heat transfer coefficient.

3 Stagnant Thermal Conductivities of Metal Foams

Yang and Nakayama [25] proposed a general unit cell model based on the volume averaging theory and evaluated stagnant thermal conductivities of packed beds, screen wires, and metal foams, which show good agreement with available experimental data. The structure of metal foams of our interest is quite complex, since their cells are usually polyhedrons of many faces in which each face has a pentagon or hexagonal shape. Therefore, it may not be practical to describe all details of the structure accurately. Thus, Yang and Nakayama [25] appealed to a foam cell geometry idealization and applied their general unit model to high porosity metal foams. Faithfully following the volume average theory, they derived an analytical expression, which runs as

$$\frac{k_{stag}}{k_f} = \sigma (1 - \xi^2) + 2 \xi (1 - \xi) \sigma$$ \hspace{1cm} (13)$$

where

$$\sigma = 1 - 3 \xi^2 + 2 \xi^3$$ \hspace{1cm} (14)$$

Equation (13) is a function of only two parameters, namely, the thermal conductivity ratio $\sigma = k_f/k_s$ and the porosity ξ. It turns out to be mathematically identical to the formulas obtained by Hsu et al. [17] and Paek et al. [26]. Paek et al. used Dul’nev’s model [27], which transforms an open-cell porous medium consisting of polygonal foam geometry to an equivalent cubic cell model.

For the case of high porosity (i.e., $\xi \ll 1$) and high thermal conductivity ratio such as in metal foam and air combinations of our interest, we typically have $\sigma = 8200$ and $\xi = 0.95$. Thus, the condition $\sigma \gg \frac{3}{2}(1 - \xi)$ is satisfied. For such cases, Eq. (13) along with Eq. (14) can further be simplified as

$$\frac{k_{stag}}{k_f} = \sigma \frac{1 - \xi}{3}$$ \hspace{1cm} (15)$$

which turns out to be identical to the expression derived by Krishnan et al. [28]. They used the Lemlich theory [29], in which it is assumed that the conduction for the case of polyhedral foams of high porosity occurs only through the ligament of solid foams along its axis, and not through its periphery.

Calmidi and Mahajan [30,31] approximated a complex foam structure, introducing a hexagonal structure. In this way, they were able to obtain an expression for the effective stagnant thermal conductivity based on a one-dimensional heat conduction concept. Their expression, which is a function of three geometrical parameters in addition to the thermal conductivity ratio $\sigma = k_f/k_s$, agrees fairly well with available experimental data, although it is limited to their particular fibrous metal foam structure. Calmidi and Mahajan [30] carried out a series of measurements using various metal foams. Air and water were used to measure the effective thermal conductivity of metal foams. Based on the experimental data collected, they proposed the following empirical formula:

$$\frac{k_{stag}}{k_f} = \varepsilon + 0.19 (1 - \varepsilon)^{0.763}$$ \hspace{1cm} (16)$$

Another set of experimental data were provided by Bhattacharya et al. [32] for a wider range of the thermal conductivity ratio, using foams of reticulated vitreous carbon (RVC) with air and water as the fluid media. Their empirical correlation, which blends the effective thermal conductivities in series and parallel arrangement of the fluid and solid phases, is given as follows:

$$\frac{k_{stag}}{k_f} = 0.35 \varepsilon + 0.65 \frac{(1 - \varepsilon)}{\varepsilon}$$ \hspace{1cm} (17)$$

Singh and Kasana [33] collected available experimental data on the thermal conductivities of metal foams and fitted them to determine the most appropriate expression for their exponent F as follows:

$$\frac{k_{stag}}{k_f} = (\varepsilon + (1 - \varepsilon) \sigma)^F (\varepsilon + \frac{1 - \varepsilon}{\sigma})^{(1-F)}$$ \hspace{1cm} (18)$$

where

$$F = 0.3031 + 0.0623 \ln(\varepsilon \sigma)$$ \hspace{1cm} (19)$$

All the forgoing analytical and empirical expressions are plotted together with some available experimental data for air as the fluid medium in Fig. 1. (Note that Eq. (13) is indicated by a solid line in the figure.) These analytical and empirical expressions indicate reasonably good agreement with the available experimental data collected by Calmidi and Mahajan [30]. It can be seen that, for metal foam and air combinations, the simple expression (15) is sufficiently accurate to correlate their stagnant thermal conductivities in a wide range of the porosity.

Calmidi and Mahajan [31] suggested using $k_{stag}|_{\xi \rightarrow 0}$ for the fluid phase conductivity and $k_{stag}|_{\sigma \rightarrow 0}$ for the solid phase conductivity for their two energy equation model. However, the foregoing Eqs. (9) and (10), which account for both tortuosity and dispersion, reveal that the correct stagnant thermal conductivities for the fluid phase and solid phase are given by

$$\varepsilon^2 k_f = \frac{\varepsilon - (k_{stag}/k_s)}{\sigma - 1} k_f$$ \hspace{1cm} (20a)$$

and

$$k_{stag}/k_f = 4k_{stag}/3k_f$$ \hspace{1cm} (20b)$$

Fig. 1 Various expressions for stagnant thermal conductivity of aluminum metal foam saturated with air

Journal of Heat Transfer

NOVEMBER 2011, Vol. 133 / 112602-3
4 Convective Heat Transfer Through a Channel Filled With a Metal Foam Bounded by Isothermal Hot and Cold Walls

Prior to its application to the cases of metal foam and air combinations, the set of the Eqs. (9) and (10) based on the effective porosity concept was used to consider one of the fundamental packed bed problems, namely, thermally developing unidirectional flow through a semiinfinite packed bed, which was treated by Nakayama et al. [1] using somewhat more complex two equation model introduced by Hsu et al. [17]. The results based on the present model are found to agree well with those reported by Nakayama et al. [1], which substantiates the validity of the present model based on the effective porosity concept.

Now, we shall seek possible exact solutions for convective heat transfer in a channel filled with metal foams, using our thermal nonequilibrium model. For this first case, as shown in Fig. 3, the air is flowing through an infinitely long channel of height L filled with a metal foam. The lower bounding wall is isothermally heated to a constant temperature T_h while the upper wall is isothermally cooled to a constant temperature T_i. As pointed out by Dukhan et al. [34] and Nakayama et al. [35], the Darcian velocity shows its dependence on the transverse direction only in a small region very close to the walls. Therefore, we may neglect the boundary term (i.e., Brinkman term) and use the plug-flow approximation. Under this approximation, sufficiently away from the entrance, the energy Eqs. (9) and (10) for the individual phases reduce to the following ordinary differential equations

For the fluid phase

\[
\varepsilon^* k_f y^2 \frac{d^2(T)}{dy^2} - h_y (T^f - T_y^f) = 0
\]

For the solid phase

\[
(1 - \varepsilon^*) k_s \frac{d^2(T)}{dy^2} - h_y (T^s - T_y^s) = 0
\]

The boundary conditions for the individual phase temperatures are given by

\[
y = -L/2 : (T)_y^f = T_h, \quad (T)_y^s = T_h - \Delta T
\]
\[
y = L/2 : (T)_y^f = T_i, \quad (T)_y^s = T_i + \Delta T
\]

Note that both solid and fluid phase temperatures must be prescribed at the upper and lower walls. The same temperature difference ΔT is set at the upper and lower walls for both temperature profiles to become symmetry about the center plane of the channel, which then guarantees the uniform heat flux across the channel. Adding these two energy equations, one obtains the total heat flux directing upward from the lower wall to the upper wall

\[
q_w = (\varepsilon^* k_f + \varepsilon k_d) \frac{d(T)^f}{dy} - (1 - \varepsilon^*) k_s \frac{d(T)^s}{dy} = \text{const.}
\]

which can be integrated to give the relationship between the solid and fluid phase temperatures as

\[
\text{Fig. 2 Thermal conductivities of the fluid and solid phases in aluminum foam and air combination}
\]

\[
(1 - \varepsilon^*) k_f \frac{d^2(T)}{dy^2} - h_y (T^f - T_y^f) = 0
\]
Substituting the foregoing relationship into Eq. (24) to eliminate \((T)^{f}\) in favor of \((T)^{s}\), we obtain the following second order ordinary differential equation with respect to \((T)^{s}\):

\[
(1 - \varepsilon^s)k_s \frac{d^2(T)^{s}}{dy^2} - \frac{k_{stag} + \varepsilon k_{dissy}}{e^s k_{f} + \varepsilon k_{dissy}} \frac{\Delta T}{L} = \frac{q_w}{e^s k_{f} + \varepsilon k_{dissy}} \sinh(\lambda y)
\]

which can be solved as

\[
\frac{(T)^{s} - \frac{T_h + T_l}{2}}{T_h - T_l} = -\frac{y}{L} \frac{e^s k_{f} + \varepsilon k_{dissy}}{e^s k_{f} + \varepsilon k_{dissy}} \frac{\Delta T}{L} \left(\frac{y}{L/2} - \sinh(\lambda y) / \sinh(\lambda L/2)\right)
\]

and the relationship Eq. (27) between the solid and fluid phase temperatures gives

\[
\frac{(T)^{f} - \frac{T_h + T_l}{2}}{T_h - T_l} = -\frac{y}{L} \frac{e^s k_{f} + \varepsilon k_{dissy}}{e^s k_{f} + \varepsilon k_{dissy}} \frac{\Delta T}{L} \left(\frac{y}{L/2} - \frac{(1 - \varepsilon^s)k_s}{e^s k_{f} + \varepsilon k_{dissy}} \sinh(\lambda y) / \sinh(\lambda L/2)\right)
\]

where

\[
\lambda = \sqrt{\frac{(k_{stag} + \varepsilon k_{dissy})h_s}{(e^s k_{f} + \varepsilon k_{dissy})(1 - \varepsilon^s)k_s}}
\]

The dimensionless temperature difference \(\Delta T/(T_h - T_l)\) indicates the degree of thermal nonequilibrium. For the case of aluminum foam and air combination, \(\lambda\) can be approximated using Eqs. (15) and (21) by

\[
\lambda = \left[\frac{\frac{1 - \varepsilon}{\kappa_{fg} + \varepsilon k_{dissy} \kappa_{fg}} (L/2)^{2/3}}{(2 + \varepsilon^2 \kappa_{fg} + \varepsilon k_{dissy} \kappa_{fg}) (1 - \varepsilon) \sigma (k_{fg})^{1/3}}\right]^{1/2}
\]

Calmdí and Mahajan [30,31] examined experimental data available for the case of aluminum foam and air combination, and proposed the empirical correlations for the volumetric heat transfer coefficient and the dispersion coefficient as follows:

\[
Nu_v = \frac{h_v d_m^2}{k_f} = 8.72(1 - \varepsilon)^{1/4} \left(1 - e^{-(1 - \varepsilon)/0.04}\right)^{1/2} \left(\frac{u_m d_m}{\nu}\right)^{1/2} Pr^{0.37}
\]

\[
\frac{\varepsilon k_{dissy}}{k_f} = 0.06 \left(\frac{\rho c_p u_m \sqrt{K}}{k_f}\right)
\]

where \(u_m\) is the Darcian velocity, and the permeability is given by the following empirical correlation [31]:

\[
K/d_m^2 = 0.00073 (1 - \varepsilon)^{-0.224} \left(1 - e^{-(1 - \varepsilon)/0.04}\right)^{1/3} \left(1 - \varepsilon\right)^{-1.11}
\]

where \(d_m\) is the pore diameter. The temperature profiles for both phases for the case of \(\sigma = 8200, \varepsilon = 0.95, \rho c_p u_m L/k_f = 5000, d_m/L = 0.1, K/d_m^2 = 0.015,\) and \(\Delta T/(T_h - T_l) = 0.5/20 = 0.025\) are illustrated in Fig. 4 for convective uniform flow through a channel.

Fig. 4 Fluid and solid temperature profiles in a metal foam channel with isothermal walls

Journal of Heat Transfer

NOVEMBER 2011, Vol. 133 / 112602-5
The temperature difference between the phases is appreciable only in a thin layer very close to the walls. After carrying out a series of computations based on Eqs. (30a) and (30b) for wide ranges of the parameters, it has been confirmed that an increase in $\Delta T/(T_h - T_i)$ does not affect the thickness of the layer much. The two phases are found nearly at thermal equilibrium over most of the channel cross-section, justifying the local thermal equilibrium assumption for this case of isothermal walls.

According to Eq. (28), the Nusselt number is given by

$$Nu_L = \frac{q_w L}{(T_h - T_i) k_f} = \frac{1 - \epsilon}{3} \sigma + \frac{\epsilon k_{dis}}{k_f}$$

$$- 2 \left(\frac{2 + \epsilon}{3} + \frac{k_{dis}}{k_f} \right) \left(\Delta T \right)$$

(35)

As illustrated in Fig. 5, the Nusselt number increases with the Reynolds number $Re_d = u_0 d_m / \nu$, since the thermal dispersion increases with the Reynolds number. However, Eq. (35) indicates that a high degree of thermal nonequilibrium results in diminishing the Nusselt number.

5 Convective Heat Transfer Through a Channel Filled With a Metal Foam Bounded by Constant Heat Flux Walls

In this second case, as shown in Fig. 6, both upper and lower bounding walls are heated by constant wall heat flux q_w. Thus, the boundary condition is given by

$$q_w = (\epsilon' k_f + \epsilon k_{dis}) \frac{\partial T_f'}{\partial y} \bigg|_{y = \pm L/2} + (1 - \epsilon') k_s \frac{\partial T_s'}{\partial y} \bigg|_{y = \pm L/2}$$

(36)

The energy Eqs. (9) and (10) for the individual phases for this case may be written as

For the fluid phase

$$\rho_f c_f u_D \frac{\partial (T_f')}{\partial x} = \epsilon' k_f \frac{\partial^2 (T_f')}{\partial y^2} - h_i \left(T_f' - T_i' \right)$$

(37)

For the solid phase

$$(1 - \epsilon') k_s \frac{\partial^2 (T_s')}{\partial y^2} - h_i \left(T_s' - T_i' \right) = 0$$

(38)

which may be added to give

$$\rho_f c_f u_D \frac{\partial (T_f')}{\partial x} = \epsilon' k_f \frac{\partial^2 (T_f')}{\partial y^2} + (1 - \epsilon') k_s \frac{\partial (T_s')}{\partial y}$$

(39)

Upon integrating the foregoing Eq. (39) over the channel with the boundary condition given by Eq. (36), the energy balance readily gives us

$$\frac{d (T_f')}{dx} = \frac{2 q_w}{\rho_f c_f u_D L}$$

(40)

for this case of constant heat flux, which can be substituted into Eq. (39) to give

$$\frac{\partial}{\partial y} \left(\epsilon' k_f + \epsilon k_{dis} \right) \frac{\partial (T_f')}{\partial y} + (1 - \epsilon') k_s \frac{\partial (T_s')}{\partial y} = \frac{2 q_w}{L}$$

which may be integrated as

$$\left(\epsilon' k_f + \epsilon k_{dis} \right) \left(T_w - \Delta T \right) - \frac{dT_f'}{dy} + (1 - \epsilon') k_s (T_w - \langle T_i' \rangle)$$

(41)

where the symmetry condition at $y = 0$ is exploited. The equation may further be integrated as

$$\frac{q_w L}{2} \left(\frac{L}{2} - y^2 \right)$$

(42)

where $\langle T_f' \rangle_{y = \pm L/2} = T_w$ and $\langle T_i' \rangle_{y = \pm L/2} = T_w - \Delta T$. The degree of thermal nonequilibrium, $\Delta T = \langle T_f' \rangle - \langle T_i' \rangle$, must be prescribed. The foregoing relationship (41) between the solid and fluid temperatures is substituted into Eq. (38) to obtain the following ordinary differential equation in terms of $\langle T_f' \rangle - T_w$, which is a function of y alone, as

$$(1 - \epsilon') k_s \frac{d^2 \langle T_f' \rangle - T_w}{dy^2} = h_i (\epsilon' k_f + \epsilon k_{dis}) \langle T_f' \rangle - T_w$$

(43)

where $h_i q_w \frac{dT_f'}{dy} + h_i \left(\Delta T + 4(\epsilon' k_f + \epsilon k_{dis}) \right)$

(44)
This ordinary differential equation, after considerable manipulations, yields

\[
\frac{(T)^{\prime} - T_w}{Lq_w/(k_{stag} + \varepsilon k_{disy})} = \frac{1}{4} \left(\frac{y}{L/2} \right)^2 - 1 + \frac{8}{(\lambda L)^2} \left(1 - \frac{\cosh(\lambda y)}{\cosh(\lambda L/2)} \right) \left(\varepsilon k_{stag} + \varepsilon k_{disy} \right) \frac{1 - \cosh(\lambda y)}{\cosh(\lambda L/2)} \times \frac{\Delta T}{Lq_w/(k_{stag} + \varepsilon k_{disy})} \quad (43a)
\]

and

\[
\frac{(T)^{\prime} - T_w}{Lq_w/(k_{stag} + \varepsilon k_{disy})} = \frac{1}{4} \left(\frac{y}{L/2} \right)^2 - 1 - \left(1 - \varepsilon \right) k_{stag} \frac{8}{(\lambda L)^2} \left(1 - \frac{\cosh(\lambda y)}{\cosh(\lambda L/2)} \right) \left(1 - \varepsilon \right) k_{stag} + \varepsilon k_{disy} \frac{1 - \cosh(\lambda y)}{\cosh(\lambda L/2)} \times \frac{\Delta T}{Lq_w/(k_{stag} + \varepsilon k_{disy})} \quad (43b)
\]

where \(\varepsilon \) is as already defined by Eq. (31a). Let us consider the two asymptotic conditions for the degree of thermal nonequilibrium, \(\Delta T \), namely, the local thermal equilibrium condition at the wall, i.e. \(\Delta T = 0 \), and the local uniform heat flux condition at the wall, as given by (Fig. 6)

\[
q_w = \varepsilon k_{stag} + \varepsilon k_{disy} \frac{\partial (T)^{\prime}}{\partial y} \bigg|_{y = \pm L/2} = \frac{1 - \varepsilon}{1 - \varepsilon} k_{stag} + \varepsilon k_{disy} \frac{\partial (T)^{\prime}}{\partial y} \bigg|_{y = \pm L/2}
\]

which gives

\[
\frac{\Delta T}{Lq_w/(k_{stag} + \varepsilon k_{disy})} = \frac{1 - \varepsilon}{k_{stag}} + \varepsilon k_{disy} \frac{\tanh(\lambda L/2)}{(\lambda L)^2} - \frac{1}{1 - \varepsilon} \frac{k_{stag} + \varepsilon k_{disy}}{k_{stag} + \varepsilon k_{disy}} \quad (44)
\]

The fluid and solid temperature profiles across the upper half channel are illustrated for the aluminum foam and air combination, \(\sigma = 8200 \), \(\varepsilon = 0.95 \), \(\rho c_p \mu_0 L/k_f = 5000 \) \(d_m/L = 0.1 \), and \(K/d_p^2 = 0.015 \) in Figs. 7(a) and 7(b) for these two asymptotic cases, namely, the local thermal equilibrium wall case and the local uniform heat flux wall case, respectively. As before, Eqs. (32)–(34) are used to evaluate the volumetric heat transfer coefficient and the dispersion coefficient. It should be noted that the local uniform heat flux condition at the wall, as shown in Fig. 7(b), yields negative \(\Delta T = (T)^{\prime} - (T)^{\prime} \bigg|_{y = \pm L/2} \), since, under such a wall condition, the fluid temperature gradient at the wall stays so high to generate the required heat flux, that the fluid temperature exceeds the solid temperature at the wall. However, this asymptotic condition appears to be unrealistic. The other asymptotic condition of local thermal equilibrium wall (\(\Delta T = 0 \)), as illustrated in Fig. 7(a), may be much closer to reality for the case of base materials with sufficiently high thermal conductivity. Thus, the assumption of local thermal equilibrium wall (\(\Delta T = 0 \)) may be used for practical estimations. As both figures clearly show that the solid temperature in the core region is always substantially higher than the fluid temperature for the case of channels with constant heat flux walls, irrespective of the degree of thermal nonequilibrium, \(\Delta T \). Therefore, the local thermal equilibrium assumption ceases to be valid for the case of constant heat flux walls.

Finally, the Nusselt number for the case of local thermal equilibrium at the wall (\(\Delta T = 0 \)) is presented in Fig. 8, which
indicates monotonous increase in the Nusselt number with the Reynolds number.

\[
N_{UL} = \frac{q}{(T_o - T_f) k_f} = \frac{f_{stag} + e^3 k_{dis}}{6 - (1 - e^3) \frac{k_f}{(\sigma + e^3 k_{dis}) (L/2)}} \\
= \frac{6 (1 - e^3) \sigma}{2 + e^3 \frac{k_f}{(\sigma + e^3 k_{dis}) (L/2)}} 4 \left(1 - \frac{\tan(\theta/2)}{(\theta/2)}\right)
\]

(45)

6 Conclusions

Upon introducing the effective porosity to account for the effects of tortuosity on the stagnant thermal conductivity, a thermal nonequilibrium model has been proposed for convection in a fluid saturated porous medium. Various analytical and empirical expressions for the stagnant thermal conductivities are compared against the experimental data available for the aluminum foam and air combination. Simple analytical expressions have been proposed to evaluate the thermal conductivities for the individual phases, which turn out to be significantly different from those based on simplified two-equation models, used by most of previous investigators. Using the thermal nonequilibrium model, exact solutions are found, assuming a plug flow, for the two cases of thermally fully developed convective flows through a channel, namely, the case of isothermal hot and cold walls and the case of constant heat flux walls. The resulting temperature profiles across the channel for the case of metal and cold walls and the case of constant heat flux walls. The resulting temperature profiles across the channel for the case of metal and cold walls and the case of constant heat flux walls.

Acknowledgment

This work was motivated by the remarks made by Professor N. Dukhan of University of Detroit Mercy to one of the authors (A. N.) during the Third International Conference on Porous Media and its Applications in Science, Engineering and Industry held in Montecatini, Italy, in June, 2010. The authors are grateful to Professor Dukhan for his useful suggestions made on this study.

Nomenclature

\| \begin{align*}
A & = \text{surface area (m}^2) \\
A_{int} & = \text{interface between the fluid and solid (m}^2) \\
c & = \text{specific heat (J/kgK)} \\
c_p & = \text{specific heat at constant pressure (J/kgK)} \\
d_p & = \text{mean pore diameter (m)} \\
h & = \text{volumetric heat transfer coefficient (W/m}^3\text{K)} \\
K & = \text{permeability (m}^2) \\
L & = \text{channel height (m)} \\
\mathbf{n} & = \text{unit vector pointing outward from the fluid side to solid side (-)} \\
Pr & = \text{Prandtl number (-)} \\
q & = \text{heat flux (W/m}^2\text{)} \\
T & = \text{temperature (K)} \\
u_D & = \text{Darciian velocity (Uniform inlet velocity) (m/s)} \\
u_i & = \text{velocity vector (m/s)} \\
V & = \text{representative elementary volume (m}^3) \\
x_i & = \text{Cartesian coordinates (m)} \\
y, z & = \text{Cartesian coordinates (m)} \\
e & = \text{porosity (-)} \\
\varepsilon & = \text{effective porosity (-)} \\
\nu & = \text{kinematic viscosity (m}^2\text{s)} \\
\rho & = \text{density (kg/m}^3) \\
\end{align*}\|

Special Symbols

\| \begin{align*}
\phi & = \text{deviation from intrinsic average} \\
(\phi) & = \text{Darciian average} \\
(\phi)^{st} & = \text{intrinsic average} \\
\end{align*}\|

References

112602-8 / Vol. 133, NOVEMBER 2011 Transactions of the ASME