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a b s t r a c t

Heat transfer performance assessment was made for forced convection in a heated tube with a porous
medium core and a tube with a wall covered with a porous medium layer, so as to investigate effec-
tiveness of porous material insertion within a tube. Both local thermal and non-thermal equilibrium
analyses were carried out for the two cases of partial porous medium filling, to investigate the validity of
local thermal equilibrium assumption. It has been found that the local thermal non-equilibrium analysis
is essential for the case of forced convection in a tube with a heated wall surface covered with a porous
medium layer, whereas the local thermal equilibrium analysis suffices to capture transport phenomena
for the case of forced convection in a tube with a porous medium core. In a comparatively low range of
pumping power, the heat transfer performance of the tube with a porous medium core is higher than
that of the tube with a wall covered with a porous medium layer. However, in a high range of pumping
power, the latter performance exceeds the former.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

The utilization of porous medium inside the tube has attracted
considerable attention due to its possible potential in enhancing
heat transfer performance, such as in solid matrix heat exchangers,
fuel cells, electronic devices, solar absorbers, and so on. A
comprehensive literature review associated with partial filling of
porous medium inside the tube can be found in Ref. [1].

A number of researchers dealt with the Brinkman effects on the
velocity profile in the tube. As pointed out by Dukhan et al. [2], the
Darcian velocity shows its dependence on the transverse direction
only in a small region very close to the wall. Base on the plug flow
approximation, they carried out a simple heat analysis and ob-
tained approximate solutions, which agree very well with the
corresponding experimental results. A theoretical study of fully
developed forced convection in a channel filled with a porous
matrix was presented by Poulikakos and Kazmierczak [3]. They
concluded that the Brinkman flowmodel is appropriate only for the
flows in sparsely packed porous media.
ical Engineering, Shizuoka
8561, Japan. Tel./fax: þ81 53

ang).

son SAS. All rights reserved.
Many researchers [4e17] focused on the two-energy equation
models based on the assumption of local thermal non-equilibrium,
because the assumption of local thermal equilibrium often fails, for
the cases, in which there is large difference between the thermal
conductivities of fluid and solid phases, or significant heat gener-
ation in any one of the phases. Nakayama et al. [18] used the two-
energy equation model introduced by Hsu [19] and Hsu et al. [20],
and obtained exact solutions for two fundamental steady heat
transfer cases, namely, one-dimensional steady heat conduction in
a porous slab with internal heat generation, and also thermally
developing unidirectional flow through a semi-infinite porous
medium. They pointed out that the thermal equilibrium assump-
tion ceases to be valid even for certain steady thermal problems.

Tong et al. [21] conducted a series of numerical calculations for
a channel with its core partially filled with a porous medium. They
claimed that for some conditions heat transfer is maximized by
using a porous medium thinner than the channel height. Based on
the assumption of local thermal equilibrium, Yang et al. [22] ob-
tained the analytical solutions for fluid flow and heat transfer, and
elucidated the existence of the optimal porous core diameter ratio,
which yields the maximum heat transfer coefficient. Bhargavi and
Satyamurty [23] considered three different arrangements of porous
media in parallel plate channels subject to uniform heat flux. It has
been found that partial filling of porous medium in the core region
yields themaximumenhancement inheat transfer per unit pressure

mailto:f5945037@ipc.shizuoka.ac.jp
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts
http://dx.doi.org/10.1016/j.ijthermalsci.2011.10.023
http://dx.doi.org/10.1016/j.ijthermalsci.2011.10.023
http://dx.doi.org/10.1016/j.ijthermalsci.2011.10.023


C. Yang et al. / International Journal of Thermal Sciences 54 (2012) 98e108 99
gradient. In light of the DarcyeBrinkman law and the assumption of
local thermal non-equilibrium, Xu et al. [24] derived the exact
solutions for both fluid and solid phases. Meanwhile, a parametric
studywas performed to investigate the influences of various factors
on the flow resistance and heat transfer performance. Pavel and
Mohamad [25,26], Mohamad [27] and Huang et al. [28] performed
the corresponding experimental investigations for the partial filling
of porousmedium inserts in the core region of tube. They claim that
the porous medium inserts are effective to enhance heat transfer at
expense of a reasonable pressure drop.

In the previous investigations, however, the effects of local
thermal non-equilibrium assumption on heat transfer in tubes with
porousmedia insertions have not been sufficiently elucidated yet. In
this study, firstly, we shall consider forced convection in a tubewith
a porousmedium core and a tubewith awall coveredwith a porous
medium layer. These twoways of porous media insertions may lead
to possible increase in heat transfer rates at a reasonable increase of
pressure drop. Both local thermal and non-thermal equilibrium
analyses will be made for the two cases to investigate the validity of
local thermal equilibrium assumption. Secondly, we shall investi-
gate effectiveness of porousmaterial insertionwithin a tube, so as to
find out where in a tube to place porous media, either in the core or
over thewall. It will be found that, in a low range of pumping power,
the heat transfer performance of the tube with a porous medium
core is higher than that of the tubewith awall coveredwith a porous
medium layer. However, in a high range of pumping power, the
latter performance exceeds the former.

2. Mathematical model based on local thermal non-
equilibrium assumption

Upon integrating two energy equations for the two individual
phases over a representative elementary volume V following the
volume averaging theory [29e32], we obtain the macroscopic
energy equations for the two individual phases as follows:

For the fluid phase:
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For the solid matrix phase:

rscsð1� 3ÞvhTi
s

vt
¼ v

vxj

 
ð1� 3ÞksvhTi

s

vxj
� ks

V

Z
Aint

TnjdA

!

� 1
V

Z
Aint

kf
vT
vxj

njdA (2)

where the volume average of a certain variable f in the fluid phase
is defined as

hfifh 1
Vf

Z
Vf

fdV

such that hTif is the intrinsic volume average of the fluid temper-
ature, while hTis is the intrinsic volume average of the solid matrix
temperature, where Vf is the volume space which the fluid phase
occupies. The porosity 3h Vf/V is the volume fraction of the fluid
space. The variable f is decomposed into its intrinsic average and
the spatial deviation from it:

f ¼ hfifþ~f

Moreover, Aint is the local interfacial area between the fluid and
solid matrix, while ni is the unit vector pointing outward from the
fluid side to solid side. The continuity of both temperature and heat
flux is imposed on the interface. Obviously, the parenthetical terms
on the right hand-side of Eq. (1) denote the diffusive heat transfer,
while the last term describes the interfacial heat transfer between
the solid and fluid phases. In terms of the local thermal equilibrium
assumption, the following one-equation model can be achieved by
combining the previous Eqs. (1) and (2):
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where

hfih1
V

Z
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is the Darcian average of the variable f such that huji ¼ 3hujifis the
Darcian velocity vector. From the foregoing Eq. (3), the macroscopic
heat flux vector qi¼ (qx,qy,qz) and its corresponding stagnant
thermal conductivity kstag may be defined as follows:
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Note that the first term in the rightmost expression corresponds
to the upper bound of the effective stagnant thermal conductivity
based on the parallel model, namely, ( 3kfþ (1� 3)ks). Thus, it is the
tortuosity term (i.e. the second term) that adjusts the level of the
effective stagnant thermal conductivity from its upper bound to
a correct one.

Meanwhile, for obtaining more concise forms of the previous
two energy equations, the following two-energy equation model
was presented by Yang and Nakayama [33] along with the effective
porosity:

For the fluid phase:
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For the solid matrix phase:
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where the effective porosity 3* which accounts for the effect of
tortuosity on the stagnant thermal conductivity is defined such that
the stagnant thermal conductivity is given by
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kstag ¼ 3
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such that Eq. (4) gives
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As the stagnant thermal conductivity kstag is given either
empirically or theoretically, the effective porosity 3* can easily be
evaluated from (7b). Furthermore, the thermal dispersion term is
modeled according to the gradient diffusion hypothesis [34]:
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while the interfacial heat transfer between the solid and fluid
phases is modeled using Newton’s cooling law:
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where hv is the volumetric heat transfer coefficient, which must be
prescribed.
3. Physical model and its velocity field

First, we consider the fluid flow and heat transfer in a tube with
itswall coveredwith aporousmedium layer. As indicated in Fig.1(a),
the tubewhosewall is entirely covered by ametal foam layer is long
enough for both velocity and temperature fields to be fully devel-
oped. The wall is subject to a constant and uniform heat flux.

Xu et al. [24] carried out a local thermal non-equilibrium anal-
ysis using their two equation model which is equivalent to the
present model, but without consideration of tortuosity. They used
Fig. 1. (a) A tube with its wall covered with a porous medium layer. (b) A tube with
a porous medium core.
the Brinkman extended Darcy velocity profile to obtain individual
temperature profiles for fluid and solid phases. However, they
never compared their results with those obtained under the local
thermal equilibrium assumption. Thus, we shall carry out both local
thermal equilibrium and non-equilibrium analyses to compare
both sets of the results, to examine possible limitations of the local
thermal equilibrium assumption.

Although the exact temperature profiles obtained by Xu et al.
[24] with the Brinkman extended Darcy velocity profile are avail-
able, they are quite complex and formidable to use for heat transfer
estimations. Thus, we shall seek the approximate temperature
profiles exploiting the plug flow approximation. As pointed out by
Dukhan et al. [2], the Darcian velocity shows its dependence on the
transverse direction only in a small region very close to the wall. Its
effects are so minor to reflect on the corresponding temperature
profiles. This will shortly be confirmed below by comparing our
results based on the plug flow against those of Xu et al. [24].

Based on the Darcy’s law, we assume the plug flow within
a porous layer adjacent to the wall and obtain:

u ¼ �K
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hui ¼ const: for Di=2 � r � D=2 (11)

whereas the interfacial hydrodynamics compatibility conditions at
r¼Di/2 are given by:
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Subsequently, the velocity profile within the fluid region may
readily be determined as:
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for 0 � r � Di=2 (13)

where Da¼ K/D2 is the Darcy number whereas Rp¼Di/D is the
inner and outer diameter ratio. In light of mass conservation in the
cross section of a tube, the interfacial velocity ui is related to the
bulk mean velocity uB in the tube as:

ui
uB

¼ 32Da
32Daþ R4p

(14)

Furthermore, for a given set of Reynolds number ReD and Rp, the
friction factor lf may readily be obtained as:

lfh� 2D
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In Figs. 2 and 3, the present velocity profiles based on the plug
flow approximation are compared with those obtained by Xu et al.
with theBrinkmantermfor threeporousdiameter ratios, namely, 0.1,
0.3 and 0.5, respectively. It is clearly seen from thefigures that for the
large Darcy number such as in the case of Da¼ 10�3, the Brinkman
effects on the velocity are significant, while, for the relatively low
Darcynumber suchas in the caseofDa¼ 1.5�10�4, theeffectson the
velocity diminish such that the Brinkman term in the momentum
equation of porous medium may well be neglected for simplicity.

4. Thermal analysis for forced convection in a tube with its
wall covered with a porous medium layer

For relatively small Darcy number, the neglect of Brinkman term
in the momentum equation of porous media would not result in
serious errors. Therefore, we may neglect the boundary term (i.e.
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Fig. 2. The velocity profiles for the case of Da¼ 10�3.
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Brinkman term) and use the plug flow approximation. The exper-
imental investigations performed by Jamin and Mohamad [35]
indicate that the contact resistance between the heating wall and
porous medium may have significant effect on the heat transfer
performance. However, for simplification, the effect of contact
resistance is neglected in this study. In what follows, we shall
present the thermal non-equilibrium analysis, which will be fol-
lowed by the thermal equilibrium version.
4.1. Local thermal non-equilibrium analysis

Under the plug flow approximation, the energy equations for
the fluid phase and solid phase in a porous medium region are
given as following:
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and
Fig. 3. Velocity profiles for the case of Da¼ 1.5�10�4.
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Meanwhile, the energy equation in the clear fluid region is:
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whereas the interfacial thermal compatibility conditions at r¼Di/2
are given by:
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Eqs. (16) and (17) are added to form
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where

Jh
uD
uB

¼ ui
uB

¼ 32Da
32Daþ R4p

(21)

The energy balance for the case of constant heat flux readily
gives: 
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where hTiBf is the bulk temperature of the fluid phase. Since dhTiBf /
dx¼ vhTif/vx, Eqs. (16) and (18) can be rewritten as follows:
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and
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Correspondingly, Eq. (20) can be transformed as
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further be integrated as
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where hTisjr¼D=2 ¼ Tw and hTif jr¼D=2 ¼ Tw�DT . The degree of
thermal non-equilibrium, DT ¼ ðhTis�hTif Þjr¼D=2, must be
prescribed. As pointed out by Yang et al. [36], when
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DT ¼ ðhTis�hTif Þjr¼D=2 is equal to zero, the results are expected to
be closer to the reality. The foregoing relationship (25) between the
solid and fluid temperatures is substituted into Eq. (17) to obtain
the following ordinary differential equation in terms of (hTis� Tw)
as
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Note that (hTis� Tw) is a function of r alone, since dTw/dx¼ 4qw/
rfcpf

uBD. This ordinary differential equation, after some manipu-
lations, yields
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where I0,1 are the modified I Bessel functions of the zeroth, first,
respectively. Correspondingly, K0,1 are also the modified K Bessel
functions of the zeroth, first, respectively.

The combination of Eqs. (27) and (25) readily gives the
temperature of the fluid phase in the porous medium region:
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Therefore, the temperature of fluid phase in the interface Ti can
be subsequently obtained
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The temperature profile in the clear fluid region may readily be
achieved by integrating Eq. (18) with the boundary condition
vhTif=vrjr¼0 ¼ 0 and the temperature of fluid phase in the interface
as
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The corresponding Nusselt number may be evaluated from
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Xu et al. [24] obtained the Nussselt number for the case of ks/
kf¼ 8200, Da¼ 1.5�10�4 and 3¼ 0.95. In Fig. 4, the present results
of the Nusselt number based on the plug flow approximation are
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compared with those obtained by Xu et al. with the Brinkman
effects considered. The difference between the two sets of the
results is indiscernible, as reported also by Yang et al. [36]. Thus, the
plug flow approximation is quite effective to evaluate accurately
the heat transfer rate from the wall covered with a porous medium
layer. The case of fully filled porous medium (Rp¼ 0) yields the
maximum Nusselt number, whereas the case of pure fluid (Rp¼ 1)
gives its minimum. The Nusselt number decreases drastically for
the case of partial filling, Rp> 0.1, since most fluid tends to flow
through the core without a porous medium freely.
4.2. Local thermal equilibrium analysis

As for comparison, we also seek the temperature profile and
Nusselt number based on the assumption of local thermal equi-
librium model, namely, hTis¼ hTif¼ T. The temperature profile in
the porous medium region, which satisfies the boundary condition
as given by qw ¼ ð 3*kf þ 3kdisyy ÞðvhTif=vrÞjr¼D=2 þ ð1� 3*ÞksðvhTis
=vrÞjr¼D=2 ¼ const:, can readily be obtained as

T � Tw

Dqw=
�
kstag þ 3kdisyy

� ¼ J
	� r

D

�2
�1
4
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2
ln
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Therefore, the temperature in the interface Ti can be subse-
quently achieved as

Ti � Tw

Dqw=
�
kstag þ 3kdisyy

� ¼ J
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Rp
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#
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ln
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(42)

By integrating Eq. (18) with the boundary condition vhTif=vrjr¼0 ¼
0 and matching Eq. (42), the temperature profile in the clear fluid
region may readily be obtained as

T � Tw

Dqw=
�
kstag þ 3kdisyy

� ¼
4J
�
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�
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Fig. 4. Comparison of the present results based on the plug flow approximation with
those of Xu et al.
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Thus, the Nusselt number of our concern may be evaluated
according to Eqs. (41) and (43) as
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where

O1 ¼
4J
�
kstag þ 3kdisyy

�
kf

(46)

and

O2 ¼ 1þ R2p
16Da

(47)

Due to a number of advantages such as high thermal conductivity,
high strength, large specific surface area and low density etc.,
aluminum foamsare considered to be ideal porousmedia for possible
engineering applications, such as compact heat exchangers, heat
sinks for power electronics, condenser towers and regenerators.
Calmidi and Mahajan [37,38] investigated the effective thermal
conductivity, interstitial heat transfer coefficient and thermal
dispersion, andproposedusefulexperimental correlationsas follows:
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Fig. 5. Fluid and solid temperature profiles in a tube with its wall covered with
a porous medium layer.

Fig. 6. Comparison of local thermal equilibrium and non-equilibrium analyses for
forced convection with its wall covered with a porous medium layer.
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where uD is the Darcian velocity, s is the ratio of thermal conduc-
tivity of solid phase to that of fluid phase, and dm is the pore
diameter.

Using these correlations for the case of aluminum foam and air
combination, with s¼ 8200, 3¼ 0.95, rfcpf

uDD/kf¼ 5000, dm/
D¼ 0.1 and K/dm2 ¼ 0.015, both fluid and solid temperature profiles
are generated from the foregoing local thermal non-equilibrium
model and are presented in Fig. 5, assuming DT¼ 0. Note that the
stagnant thermal conductivity, the volumetric heat transfer coef-
ficient and the dispersion coefficient, obtained based on Eqs.
(48)e(51), are given by kstag/kf¼ 160, 3kdisyy /kf¼ 3.67 and lD¼ 42.1,
respectively.

It can be clearly seen from Fig. 5, the solid temperature
within the metal foam layer stays higher than that of the fluid
phase, since the thermal conductivity of the metal foam is much
higher than that of the air. This temperature difference within
the wall layer significantly reflects on the level of the Nusselt
number, as can be seen in Fig. 6, where the two curves gener-
ated from the local thermal equilibrium and non-equilibrium
analyses are presented respectively. The figure indicates that
the local thermal equilibrium analysis overestimates the Nusselt
number, yielding significant errors especially for small Rp. Thus,
we may conclude that the local thermal non-equilibrium must
be used to evaluate the heat transfer rate through the metal
foam layer.
5. Thermal analysis for forced convection in a tube with
a porous medium core

Another possible way to enhance the heat transfer may be to
place the porous cylinder in the core region of the tube, as
proposed by many researchers including Liu et al. [39] and Yang
et al. [22]. Yang et al. obtained approximate solutions under the
local thermal equilibrium assumption. Since exact solutions have
not been reported yet, neither under the local thermal equilib-
rium nor non-equilibrium assumption, we shall seek below exact
solutions for both assumptions and compare these two sets of
the results. The corresponding physical model is indicated in
Fig. 1(b).
5.1. Velocity field

The velocity profile and friction factor for the case are given by
Yang et al. [22] as

u ¼ �K
mf

dp
dx

hui ¼ const: for 0 � r � Di=2 (52)
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5.2. Local thermal non-equilibrium analysis

Following the same procedure as in the preceding case, the
temperature profiles of both fluid and solid phases are obtained
under the assumption of local thermal non-equilibrium.

For the solid phase in the core porous medium:
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For the fluid phase in the core porous medium:

hTif�Tw

Dqw=
�
kstag þ 3kdisyy

� ¼
J1
�
kstag þ 3kdisyy

�
3*kf þ 3kdisyy

"� r
D

�2
�
�
Rp
2

�2
#

�
�
1� 3*

�
ks

3*kf þ 3kdisyy

(
4J1

ðlDÞ2
	
1� I0ðlrÞ

I0ðlDi=2Þ



þ J1

"� r
D

�2
�
�
Rp
2

�2
#)

þ Y (57)

For the clear fluid region over the wall:
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ThecorrespondingNusseltnumbercouldbeevaluatedbyEq. (40).
5.3. Local thermal equilibrium analysis

It is rather straightforward to show that under the local thermal
equilibriummodel, the temperature profile in the clear fluid region
over the wall is given by
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where
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Therefore, the temperature in the interface Ti can be subse-
quently achieved as
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By integrating Eq. (24) with the boundary condition
vhTif =vrjr¼0 ¼ 0 and matching Eq. (63), the temperature profile in
the porous medium of the core region may readily be obtained as
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Hence, the corresponding Nusselt number may be given by
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Fig. 8. Effect of porous medium filling on Nusselt number.
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In Fig. 7, the results based on both local thermal equilibrium and
non-equilibrium analyses are presented together in terms of the
Nusselt number. For this particular case of having a porous medium
in the core, the solid and fluid phases in the core region are virtually
under local thermal equilibrium, since the porous core is isolated
from the heated wall surface and saturated by the fluid. Thus, as can
be seen from the figure, the difference between the two sets of the
results is hardly discernible.

The Nusselt number stays at the lowest level for the case of pure
fluid, and increases as placing the porous medium in the core
region. On the contrary to the preceding case of having a porous
layer over the wall, the increase in the Nusselt number with Rp is
rather gradual, since the velocity increase over the heated wall, due
to the insertion of the porous medium core, naturally leads to heat
transfer enhancement.

6. Heat transfer performance assessment

In what follows, we shall compare the results obtained for the
case of having a porous layer over the wall with those obtained for
the case of a porous medium core, in order to find out which
placement is preferred in view of heat transfer enhancement.

The variations of Nusselt number are presented in Fig. 8, where
the Nusselt number is plotted against the same porous medium
filling ratio, namely, Ap/A¼ 1� Rp

2 for the case of having a porous
layer over the wall, and Ap/A¼ Rp for the case of a porous medium
core.

The figure clearly indicates that morewe fill the porous medium
(either over the wall or core), the higher Nusselt number we get. Its
Fig. 7. Comparison of local thermal equilibrium and non-equilibrium analyses for
forced convection in a tube with a porous medium core.
increase is gradual for the case of a porous medium core, whereas it
is steep toward Ap/A¼ 1 for the case of a porous medium layer on
the wall. For the same Ap/A, the Nusselt number for the case of
a porous medium core is always higher than that for the case of
a porous medium layer on the wall. The corresponding friction
coefficients are plotted in Fig. 9, in a similar fashion. The figure
shows that, for fixed Reynolds number and porous medium filling
ratio, the case of a porous medium core always yields more flow
resistance than the case of a porousmedium layer on thewall. Thus,
the case of a porous medium core gives more heat transfer at
expense of more flow resistance.

In order to make a rational heat transfer enhancement assess-
ment, the results of the Nusselt number for the case of Ap/A¼ 0.99,
namely, Rp¼ 0.1 for the tube with its wall covered by a porous
medium layer and Rp¼ 0.995 for the tube with a porous medium
core, are re-plotted in Fig. 10 against the dimensionless pumping
power as defined by

P:P: ¼ l1=3f Re (72)

It is interesting to note that, in the range of comparatively low
pumping power, the Nusselt number for the case of a porous
Fig. 9. Effect of porous medium filling on friction factor.



Fig. 10. Comparison of Nusselt number under equal pumping power.
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medium core is higher than that for the case of a porous medium
layer on the wall, whereas, in the range of high pumping power,
that the latter exceeds the former. Therefore, for given operating
conditions, a careful examination is required to find out which
placement is better in view of heat transfer enhancement.
7. Conclusions

In this study, theoretical analyses were made to investigate
forced convection in a tube with a porous medium core and a tube
with a wall covered with a porous medium layer. Both thermal and
non-thermal equilibrium analyses were carried out for these two
cases to investigate the validity of local thermal equilibrium
assumption. It was found that the local thermal non-equilibrium
analysis is essential for the case of forced convection in a tube
with a heated wall surface covered with a porous medium layer,
whereas the local thermal equilibrium analysis suffices to capture
transport phenomena for the case of forced convection in a tube
with a porous medium core. An assessment was made in view of
heat transfer enhancement under equal pumping power, which
reveals that, in a low range of pumping power, the heat transfer
performance of the tube with a porous medium core is higher than
that of the tube with a wall covered with a porous medium layer.
However, in a high range of pumping power, the latter performance
exceeds the former.
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Nomenclature

A: surface area (m2)
Aint: interface between the fluid and solid (m2)
c: specific heat (J/kg K)
cp: specific heat at constant pressure (J/kg K)
D: tube diameter (m)
Di: inner diameter (m)
Da: Darcy number (e)
dm: mean pore diameter (m)
hv: volumetric heat transfer coefficient (W/m3 K)
k: thermal conductivity (W/mK)
K: permeability (m2)
nj: unit vector pointing outward from the fluid side to solid side (e)
Pr: Prandtl number (e)
q: heat flux (W/m2)
r: radial coordinate
T: temperature (K)
uD: Darcian velocity (uniform inlet velocity) (m/s)
ui: velocity vector (m/s)
V: representative elementary volume (m3)
xi: Cartesian coordinates (m)
x, y, z: Cartesian coordinates (m)
3: porosity (e)
3*: effective porosity (e)
n: kinematic viscosity (m2/s)
r: density (kg/m2)
s: ratio of thermal conductivity of solid phase to that of fluid phase (e)

Special symbols
~f: deviation from intrinsic average
hfi: Darician average
hfif,s: intrinsic average

Subscripts and superscripts
dis: dispersion
f: fluid
s: solid
stag: stagnation
w: inner wall
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