PART II: PROPOSED RESEARCH AND CONTEXT

1 Background — Computer Algebra

The elementary functions are traditionally thought of as log, exp and the trigonometric and hyperbolic
functions (and their inverses). This should include powering (to non-integral powers) and also the n-th
root. These functions are built in, to a greater or lesser extent, into many computer algebra systems (not
to mention other programming languages [14, 17]), and are heavily used. However, reasoning with them
is more difficult than is usually acknowledged, and all algebra systems have one, sometimes both!, of the
following defects:

e they make mistakes, be it the traditional schoolchild one

1=V1i=+(-12=-1 (1)
or more subtle ones — see [18];

e they fail to perform obvious simplifications, leaving the user with an impossible mess when there
“ought” to be a simpler answer. In fact, there are two possibilities here: maybe there is a simpler
equivalent that the system has failed to find, but maybe there isn’t, and the simplification that the
user wants is not actually valid, or is only valid outside an exceptional set. In general, the user is not
informed what the simplification might have been, nor what the exceptional set is: it may be a few
points, some lines in the complex plane?, or significant® regions of the complex plane.

It is often thought that these problems are limited to complex numbers, and that algebra with the reals (as
opposed to the entirety of C) is safe from these difficulties. However, this is not true, for two reasons: one
is that complex numbers can be introduced via operations on reals, as in equation (1) or arccos(2) ~ 1.3171,
and the other is that well-known “equations” may be invalid even on the reals, as in

arctan z + arctan y?: arctan <1m +y > (2)
—ay

(the two sides differ by +x if zy > 1).* However, the problems are more manifest on the complexes, and a
proper solution needs complex analysis. For example,

logz # log z (3)

on the branch cut for log: instead logZ = log z + 27 on the cut. Similarly,

1
log(~) # —log 2 (4)
on the branch cut: instead log(ﬁ) = —log z + 2mi on the cut, and we even have lack of continuity:
lim log(z + iy) # log(x). (5)

y—0—
Various solutions have been expressed to the problem of branch cuts and multi-valued functions.

1. [16] points out that the concept of a “signed zero” [13] (for clarity, we write the positive zero as 0
and the negative one as 07) can be used to solve the above problems, if we say that, for z < 0,
log(z +0%4) = log(x) + 7i whereas log(z + 074) = log(x) — wi. Equation (5) then becomes an equality
for all z, interpreting the x on the right as 4+ 074. Similarly, (3) and (4) become equalities throughout.
Attractive though this proposal is, it does not answer the fundamental question as far as the designer
of a computer algebra system is concerned: what to do if the user types log(—1).

IFor example, Maple’s simplify without options has the second, whereas simplify(...,symbolic) has the first.

2As is log % = —logz except on the negative real axis

3See the example in [16].

4This is a counterexample to the belief that many of those equalities you thought were true are actually true if you restrict
your attention to the positive reals.



2. [2] and [8] point out that most “equalities” do not hold for the complex logarithm, e.g. log(z?%) # 2log 2
(try z = —1), and its generalisation

log(2122) # log(21) + log(22). (6)

The most fundamental of all non-equalities is z = log exp z, whose most obvious violation is at z = 2mi.
The authors of [8] therefore propose to introduce the unwinding number K, defined® by

_ Sy —
K(z) = z logfaxpz _ "\sz 71'-‘ cz X
271, 2

(note that the apparently equivalent definition L%J differs precisely on the branch cut for log as
applied to exp z). (6) can then be rescued as

log(z122) = log(21) + log(22) — 2miK(log(z1) + log(22)). (8)

Similarly (3) can be rescued as
logz = log z — 2wiK(log 2). (9)

Note that, as part of the algebra of K, K(log z) = K(—logz) # K(log 1). K(z) depends only on the
imaginary part of z.

3. Although not formally proposed in the same way in the computational community, one possible solu-
tion, often found in texts in complex analysis, is to accept the multi-valued nature of these functions
(we adopt the common convention of using capital letters, e.g. Ln, to denote the multi-valued function),
defining, for example

Arcsinz = {y|siny = z}.

This leads to Sqrt 22 = {£z}, which has the advantage that it is valid throughout C. Equation (6) is
then rewritten as
Ln(z122) = Ln(21) + Ln(z2), (10)

where addition is addition of sets (A + B ={a+b:a € A,b € B}) and equality is set equality®.

However, it seems to lead in practice to very large and confusing formulae. More fundamentally,
this approach does not say what will happen when the multi-valued functions are replaced by the
single-valued ones of numerical programming languages.

A further problem that has not been stressed in the past is that this approach suffers from the same
aliasing problem that naive interval arithmetic does [9]. For example,

Ln(z?) = Ln(z) + Ln(z) # 2Ln(z2),

since 2Ln(z) = {2In(z) + 4kmi : k € Z}, but Ln(z) + Ln(z) = {2In(z) + 2kni : k € Z}: indeed if
z = —1,In(2%) ¢ 2Ln(z). Hence this method is unduly pessimistic: it may fail to prove some identities
that are true.

2 Background — Cylindrical Algebraic Decomposition

Cylindrical Algebraic Decomposition [5] was invented as an effective method of solving algebraic problems of
quantifier elimination over the reals. Given a statement such as Vz : °+ax*+bz3+cx?+dx+e > 0, cylindrical
algebraic decomposition yields a semi-algebraic (that is, involving polynomials >0 with Boolean connectives)
quantifier-free formula stating where the original is valid. A major problem of the cylindrical algebraic

5Note that the sign convention here is the opposite to that of [8], which defined K(2) as L%J the authors of [8] recanted
later to keep the number of —1s occurring in formulae to a minimum.

6“The equation merely states that the sum of one of the (infinitely many) logarithms of z; and one of the (infinitely many)
logarithms of z2 can be found among the (infinitely many) logarithms of z12z2, and conversely every logarithm of z1z2 can be
represented as a sum of this kind (with a suitable choice of Ln z; and Ln z2).” [4, pp. 259-260] (our notation).



decomposition method is that it is too powerful: given a quantified semi-algebraic formula, it produces a
decomposition of R™ which answers, not merely the question asked, but also all other potential questions
(with the same order of quantifiers) involving the same formulae. In particular, given V... (y2 =2 A ..., it
will also analyse the case 42 < 2 and the two cases (y > v/2 and y < —v/2) of y? > 2.

A further problem, more one of the algorithm than of the general methodology, is that in the process it
constructs auxiliary formulae (such as = 0 in the second example of the next section), and the decomposi-
tion relates to these as well as the original formulae. Clustering [1] is a retrospective technique for reducing
the expression swell caused by this peculiarity of the algorithm.

3 Programme & Methodology

The fundamental aim of this project is to explore the approach of method (2) for handling analytic functions,
as an algebro-geometric method of resolving many of these problems.

For definiteness, we will use the definitions in [7], though it is worth pointing out that one major appli-
cation of the technology to be developed in this project would consist in providing the ability to explore the
definitional variants, as in

arccot z = T_ arctan z.
——— 2 ———r

Maple Derive

3.1 Theory

Since K is an integer-valued function of a complex variable, X(f(z)) can only change when one of two things
happens:

1. S(f(2)) crosses a multiple of 2. This involves a (potentially infinite) number of lines in f(z) space.
For many f encountered in practice, this inverts to a family of algebraic lines in z space.

2. f(z) itself is discontinuous, which involves recursion on the definition of f.

Examples explored by the investigators and their colleagues in practice (notably in the writing of [3, 6, 7])
show that one is forced to consider the geometry of C*, where k is the number of variables involved in the
putative identity. We give two examples of this.

1. [7] proves, by hand by using the unwinding number formulation, that two alternative definitions of
arccos are in fact equal.

Theorem 1

§1n<\/1;2+¢\/1;—2>:—iln(zﬂ'\/l—z?). (11)

A key step in the proof was proving the correct (and therefore containing unwinding numbers) version

of \/Z172=1/71:/72.

Lemma 1

7127 = \/g\/g(_l)K(ln(zl)Hn(%))‘ (12)
From this they deduced the following.

Lemma 2 Whatever the value of z,

V1—2vV1+4+2=+1-22



An alternative approach is given in [3], where the various branch cuts on which the two sides might
differ are analysed. Let us reformulate the problem as that of proving that

21n<\/1;“z+z'\/1;’2>—1n(z+z'\/1—z2) (13)

is identically zero.
If we differentiate (13), we get

iz

) ‘
2(\/2+2z_\/212z) _ 1_ﬁ
(V2+224+ivV2-22) z+iv/1-22

which, with the help of Lemma 2, simplifies to zero. Hence (13) is a local constant, i.e. its value only
changes at jump discontinuities, i.e. branch cuts. What are the branch cuts of (13)? It turns out that,
writing z = x + iy, the branch cuts all have y = 0, so we shall omit this. For the first term, the branch
cuts are at most [v/2,00) for the logarithm itself, and (—oc, —1) and (1, 00) for the square roots. For
the second term, we have (—oo, —1] for the logarithm, and the same cuts as before, though for different
reasons, for the square root.

(14)

From the point of view of cylindrical algebraic decomposition, we have to decompose the plane by
y=0,2=—1,2z=1and z = v/2 (in the original formulation of [5],we would need x> = 2, but we
ignore this here). This generates eight two-dimensional regions, ten one-dimensional regions and three
zero-dimensional ones. Clustering [1] would not of itself make a significant improvement here, since the
regions all differ in the signs of some of the polynomials. The important fact is that, for example, z = /2
is only relevant when y = 0. Taking this into account, a new theme in (semi-)algebraic decomposition,
should reduce this decomposition to one two-dimensional region, three one-dimensional ones and three
zero-dimensional ones: a significant gain.

2. If we consider, this time just for real = and y, the often-quoted identity

arctanz + arctan y; arctan <1a7 +y ) ) (15)
—xy

we see (and this can be justified by branch-cut reasoning: arctan has a branch cut at infinity) that the
case xy = 1 is critical, and divides the plane into three two-dimensional regions, to which the dividing
curves (the two components of zy — 1) can be attached to give three semi-algebraic regions, on which
the identity is respectively:

e false, needing —m on the right-hand side to make it true;
e true;

e false, needing +m on the right-hand side to make it true.

Application of cylindrical algebraic decomposition [5] to zy — 1 would divide the plane into seven
regions: four two-dimensional and three one-dimensional. There would be three regions corresponding
tory <1l: zy <1Az<0,z=0and zy < 1Az > 0. Clustering techniques [1] should reduce this to
the three two-dimensional and two one-dimensional regions that are intrinsic to the problem.

3.2 Implementation

The project lies on the borderline of (general-purpose, i.e. including calculus) computer algebra as classically
perceived and quantifier elimination. It is a sad fact of life that no single piece of software supports both
areas. While the state of the art in both is continually changing, we currently propose to base ourselves on
Axiom [15] or Maple for the computer algebra simplification, and RedLog [11] for the quantifier elimination.
While communication between software systems dealing in complicated mathematics is never trivial, the



fact that both Axiom and Reduce (the underlying system of RedLog) support OpenMath [10] will help
considerably.

We propose a two-level attack on the problem. Level 1 is largely at the computer algebra level, and
consists in extracting the relevant branch cuts and their equations from proposed identities, pass them
“naively” to quantifier elimination, and study the consequences for the proposed identity. These could be
exploited at several levels, from an equivalent of Maple’s testeq [12] probabilistic tester that would guarantee
to test in every region, to a proof of identity, or a corrected identity, as worked by hand above.

Level 2 would be at the cylindrical decomposition level. It is clear from the examples worked by hand
above that direct decomposition ignoring the fact that we are dealing with inequalities and regions is wasteful.

4 Relevance to beneficiaries

1. Users of mathematics, notably computer algebra systems, should no longer be faced with the choice
between a very weak simplifier (e.g. Maple’s simplify(...)) and a strong but often incorrect one
(e.g. Maple’s simplify(...,symbolic)).

2. Designers of computer algebra systems will have the powerful, but correct, algorithms on which to rely.

3. The tools and algorithms developed to analyse the geometry of C™ and R™ should be of wider relevance,
since the existing cylindrical algebraic decomposition techniques are, as pointed out above, too powerful
and general for many problems.

5 Relevance to MathFIT

e We intend to import ideas from theorem proving (quantifier elimination and the associated algorithms)
to solving the mathematical problem of simplifying elementary functions.

e This rigorous theory of simplification can then be applied to computer algebra systems, and indeed
back into theorem proving.

DISSEMINATION AND EXPLOITATION

The main route of dissemination will be the academic one: conference and journal papers. This project
lies on the boundary of computer algebra (whose natural conference is the annual International Symposium
on Symbolic and Algebraic Computation — ISSAC) and automated reasoning (whose main conference is
the annual Conference on Automated Deduction — CADE). There is also a biannual conference devoted
specifically to Artifical Intelligence and Symbolic Computation (AISC). The EU-funded Calculemus project
organises an annual series of informal conferences in this area’, which are co-located with the above. The
informal nature of Calculemus would provide a particularly useful vehicle for disseminating the early results
of the project, and getting feedback from the community.

RESOURCES

There is a substantial amount of highly mathematical development that is needed to turn the ideas behind the
examples of section 3.1 into a practicable algorithm. This is a task that requires a post-doctoral researcher,
working under the supervision of the two investigators.

The problem of expressing the geometry of C™ or R" induced by the results of these algorithm is
non-trivial. While cylindrical algebraic decomposition can solve it, in many cases this is a very wasteful
approach. We are requesting a research student to work on this problem: designing and implementing a

"Defined in the Calculemus manifesto as “the design of a new generation of mathematical software systems and computer-
aided verification tools based on the integration of the deduction and the computational power of Deduction Systems and
Computer Algebra Systems respectively”.



variant of cylindrical algebraic decomposition that is capable of handling these sort of constraints, e.g. “the
negative real axis” directly.

In order that the research student has appropriate examples and material on which to work, and also the
relevant interconnect software systems, we are requesting that the RA start three months before the research
student. We are also requesting a standard PC for the RA and student, connected to the campus network,

for which the University charges, and consumables. Travel is requested for the obvious conferences in the
field.
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