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“Google” — a new word?

I met this woman last night at a party and I came right
home and googled her.
2001 N.Y. Times 11 Mar. III. 12/3

Part of the Oxford English Dictionary ’s definition of this verb.
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Googol

10100 = 10, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

The name “googol” was invented by a child (Dr.
Kasner’s nine-year-old nephew) who was asked to think
up a name for a very big number, namely, 1 with a
hundred zeros after it. Oxford English Dictionary

We chose our system name, Google, because it is a
common spelling of googol, or 10100 and fits well with
our goal of building very large-scale search engines.

The Anatomy of a Large-Scale Hypertextual Web Search Engine
by Sergey Brin and Lawrence Page (1998).
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“I’m feeling lucky” is often right

James Davenport

Davenport in the robes of a Cambridge PhD, wearing the Bronze Medal of the University of Helsinki (awarded 2001). Davenport lecturing at RISC

(Austria) in 2007.

Professor James Davenport

Departments: Computer Science and Mathematical Sciences

Job Title: Hebron & Medlock Professor of Information Technology and (until 2005) University Director of Information Technology

Founding Editor-in-Chief LMS Journal of Computation and Mathematics: submit papers/queries here.

The first Ontario Research Chair in Computer Algebra

Former Royal Society Industrial Fellow.

Until June 2008, Director of Studies for undergraduates, and would still like them to speak English. He co-ordinates the Sun Campus Ambassador

programme for the campus: the current ambassador is Anupriya Balikai, and the Bath group's pages are here. He represents the University on the

Bristol Military Education Committee.

Works in Computer Algebra, where he is an author of a textbook, many papers and presentations. He has been Project Chair of the European

OpenMath Project and its successor Thematic Network, with responsibilities for aligning OpenMath and MathML, where he gave (2/Oct/2008) a

talk on the problems of differentiation, wrote a paper on conditions, and is producing Content Dictionaries and supervised a Reduce-based
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(It isn’t luck!)

The basic idea is obvious, with hindsight.
Choose the page with more links to it.

A B
↓ ↘ ↓
C D

Obviously D is more popular than C .
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E and F each have only one link to them, but, since D is more
popular than C , we should regard F as more popular than E (and
H as more popular than G ).
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But the Web is much much more complicated!

1. The real Web contains (lots of) loops.

2. The real Web is utterly massive — no-one, not even Google,
really knows how big.

3. The real Web keeps changing.

4. The real Web is commercially valuable, so there are incentives
to manipulate it.
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The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it . . . .
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!
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Flow in the Internet

Assume the routers R1 and R2 have total capacity 1 each.

A1 B1

↓ ↓
C1 → R1 → R2 → C2

↓ ↓
A2 B2

What is the best way of allocating bandwidth to the various flows
A1 → A2, B1 → B2 and C1 → C2?
Of course, it all depends what you mean by “best”.
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Network Most Efficient

A and B each get 1, and C nothing.
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↓ 1 ↓ 1

C1
0
−→ R1

0
−→ R2

0
−→ C2

↓ 1 ↓ 1
A2 B2

Total flow 2, but C might feel aggrieved.
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Total flow 1.5, but C is getting twice as much routing done for
him as A and B are.
A and B might feel aggrieved.
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Proportional Fairness

Each flow gets the same amount of effort from the routers.
A and B each get 2/3, and C gets 1/3.
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C1
1/3
−→ R1

1/3
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1/3
−→ C2

↓ 2/3 ↓ 2/3
A2 B2

Total flow is now 5
3 ≈ 1.66, better than max-min, but not as good

as the flow where C gets nothing.
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But in the real world

▶ Routers and links have widely different capacities

▶ The network is much more complicated, and always changing

▶ No-one has overall knowledge of the flows.

Nevertheless, the purely local algorithm devised by van Jacobsen
(earlier; published 1988) was shown in 1997 to converge to
proportional fairness.
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A wishes to send x to B.

A and B each think of a random number, say a and b.
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divide message by b

In practice, to avoid guessing, and numerical errors, x , a and b are
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So replacing the padlocks by numbers has given the eavesdropper
the chance of doing arithmetic.
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Remember that we are working modulo a large prime p. For
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5, so that log(5) = 1.
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Logs aren’t as simple as we thought!

If we continue this process, we find that we have logarithms of only
half the numbers, but each one has two values, e.g. 25 seems to
be 2 and 22.
A fatal snag? Not really.

▶ There’s a workround, which is messy, but not really difficult.

▶ If we’d chosen a different base, say 7, then we would have
logarithms of every non-zero number.

However, for suitable p, computing “discrete” logarithms is
sufficiently hard that we can be sure of the safety of this scheme.
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But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.



But it takes three messages

Can we do better?

Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.



But it takes three messages

Can we do better? Let x be a public number.

Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.



But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.



But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.



But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.

This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.



But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.



A few lessons

1. Always check for the padlock, which indicates that the data
should be secure between you and the far end.

2. If possible, use your browser — your laptop/ BlackBerry/
whatever is safer than a browser in an Internet cafe.

3. If you do use an Internet cafe, make sure you reboot the
machine afterwards — not a guarantee, but definitely safer.
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