
Mathematics Behind the Internet

James H. Davenport

University of Bath

21 September 2009

“Google” — a new word?

I met this woman last night at a party and I came right
home and googled her.
2001 N.Y. Times 11 Mar. III. 12/3

Part of the Oxford English Dictionary ’s definition of this verb.

“Google” — a new word?

I met this woman last night at a party and I came right
home and googled her.

2001 N.Y. Times 11 Mar. III. 12/3

Part of the Oxford English Dictionary ’s definition of this verb.

“Google” — a new word?

I met this woman last night at a party and I came right
home and googled her.
2001 N.Y. Times 11 Mar. III. 12/3

Part of the Oxford English Dictionary ’s definition of this verb.

“Google” — a new word?

I met this woman last night at a party and I came right
home and googled her.
2001 N.Y. Times 11 Mar. III. 12/3

Part of the Oxford English Dictionary ’s definition of this verb.

“Google” — a new word?

I met this woman last night at a party and I came right
home and googled her.
2001 N.Y. Times 11 Mar. III. 12/3

Part of the Oxford English Dictionary ’s definition of this verb.

Googol

10100 = 10, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

The name “googol” was invented by a child (Dr.
Kasner’s nine-year-old nephew) who was asked to think
up a name for a very big number, namely, 1 with a
hundred zeros after it. Oxford English Dictionary

We chose our system name, Google, because it is a
common spelling of googol, or 10100 and fits well with
our goal of building very large-scale search engines.

The Anatomy of a Large-Scale Hypertextual Web Search Engine
by Sergey Brin and Lawrence Page (1998).

Googol

10100 = 10, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

The name “googol” was invented by a child (Dr.
Kasner’s nine-year-old nephew) who was asked to think
up a name for a very big number, namely, 1 with a
hundred zeros after it. Oxford English Dictionary

We chose our system name, Google, because it is a
common spelling of googol, or 10100 and fits well with
our goal of building very large-scale search engines.

The Anatomy of a Large-Scale Hypertextual Web Search Engine
by Sergey Brin and Lawrence Page (1998).

Googol

10100 = 10, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

The name “googol” was invented by a child (Dr.
Kasner’s nine-year-old nephew) who was asked to think
up a name for a very big number, namely, 1 with a
hundred zeros after it. Oxford English Dictionary

We chose our system name, Google, because it is a
common spelling of googol, or 10100 and fits well with
our goal of building very large-scale search engines.

The Anatomy of a Large-Scale Hypertextual Web Search Engine
by Sergey Brin and Lawrence Page (1998).

Googol

10100 = 10, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

The name “googol” was invented by a child (Dr.
Kasner’s nine-year-old nephew) who was asked to think
up a name for a very big number, namely, 1 with a
hundred zeros after it. Oxford English Dictionary

We chose our system name, Google, because it is a
common spelling of googol, or 10100 and fits well with
our goal of building very large-scale search engines.

The Anatomy of a Large-Scale Hypertextual Web Search Engine
by Sergey Brin and Lawrence Page (1998).

How does Google choose what to show

Web Images Videos Maps News Shopping Mail more ▼ iGoogle | Search settings | Sign in

 Advanced Search

 Language Tools

Search: the web pages from the UK

Advertising Programmes - Business Solutions - About Google - Go to Google.com

©2009 - Privacy

Google http://www.google.co.uk/

1 of 1 20/09/2009 17:17

“I’m feeling lucky” is often right

James Davenport

Davenport in the robes of a Cambridge PhD, wearing the Bronze Medal of the University of Helsinki (awarded 2001). Davenport lecturing at RISC

(Austria) in 2007.

Professor James Davenport

Departments: Computer Science and Mathematical Sciences

Job Title: Hebron & Medlock Professor of Information Technology and (until 2005) University Director of Information Technology

Founding Editor-in-Chief LMS Journal of Computation and Mathematics: submit papers/queries here.

The first Ontario Research Chair in Computer Algebra

Former Royal Society Industrial Fellow.

Until June 2008, Director of Studies for undergraduates, and would still like them to speak English. He co-ordinates the Sun Campus Ambassador

programme for the campus: the current ambassador is Anupriya Balikai, and the Bath group's pages are here. He represents the University on the

Bristol Military Education Committee.

Works in Computer Algebra, where he is an author of a textbook, many papers and presentations. He has been Project Chair of the European

OpenMath Project and its successor Thematic Network, with responsibilities for aligning OpenMath and MathML, where he gave (2/Oct/2008) a

talk on the problems of differentiation, wrote a paper on conditions, and is producing Content Dictionaries and supervised a Reduce-based

OpenMath/MathML translator. He is organising the 22nd OpenMath workshop. He was also Treasurer of the European Mathematical Trust.

He chairs the Research Committee's Working Party on Powerful Computing: report here. There was a training course run by NAG on 17-19

September: details here. A similar course is being run in Bristol 23-25 March: register here or contact Caroline Gardiner M.Sc. (Bath).

In July 2007 he visited Hagenberg im Muehlkreis, at a variety of meetings: his notes are here. In January/February 2008 he visited the Third Joining

Educational Mathematics workshop in Barcelona. The slides of his talk are here, and his (partial) notes are here. On 18 February 2008 there was a

special seminar in Bristol in honour of Clifford Cocks: his notes are here. In July 2008 he visited Birmingham (U.K.), at a variety of meetings: his

notes are here.

Academic Year 2007/2008: in Semester 1 he taught CM30070: Computer Algebra and CM30078/50123: Advanced Networking. In Semester 2 he

oversaw the teaching of CM30173/CM50210 Cryptography, coordinated CM50209 Security, and supervised various projects.

Academic Year 2008/2009: in Semester 1 he is teaching CM30070: Computer Algebra and CM30078/50123: Advanced Networking. In Semester 2

he is on sabbatical at the University of Waterloo. See some photographs here.

Academic Year 2009/20010: in Semester 1 he is teaching XX10190: Programming and Discrete Mathematics, CM30070: Computer Algebra and

CM30078/50123: Advanced Networking. On Tuedays at 10.15 in 6E2.2, he is running a seminar series on cylindrical algebraic decomposition.

James Davenport's Home Page http://people.bath.ac.uk/masjhd/

1 of 2 20/09/2009 17:18

Whereas it has a lot to choose from

Web Images Videos Maps News Shopping Mail more ▼

Web Show options...

Search settings | Sign in

 Advanced Search

Search: the web pages from the UK

 Results 1 - 10 of about 37,400 for james davenport bath. (0.11 seconds)

James Davenport's Home Page
University of Bath. Computer Algebra, OpenMath Project, Mediated Learning Environments.

Publications, resources.

people.bath.ac.uk/masjhd/ - Cached - Similar

[PDF] A Small OpenMath Type System James Davenport Bath 1.3.2c (Public)
File Format: PDF/Adobe Acrobat - View

A Small OpenMath Type System. James Davenport. Bath. 1.3.2c (Public) c© 1999 The

OpenMath Consortium (24.969). Page 2. ESPRIT project 24969: OpenMath ...

www.openmath.org/standard/sts.pdf - Similar

by J Davenport - Cited by 22 - Related articles - All 12 versions

[PDF] On Writing OpenMath Content Dictionaries James Davenport Bath 1.4 ...
File Format: PDF/Adobe Acrobat - View

28 Jan 2000 ... 2000-03-09. On Writing OpenMath Content Dictionaries. James Davenport.

Bath. 1.4.5 (Restricted) c 2002 The OpenMath Consortium (24.969) ...

www.openmath.org/documents/writingCDs.pdf - Similar

by J Davenport - Cited by 7 - Related articles - All 7 versions

[PDF] James H. Davenport Dept. Mathematical Sciences University of Bath ...
File Format: PDF/Adobe Acrobat - View

11 Feb 2000 ... On Writing OpenMath Content Dictionaries. James H. Davenport. Dept.

Mathematical Sciences. University of Bath. Bath BA2 7AY. England ...

staff.bath.ac.uk/masjhd/OpenMath/omcd2.pdf - Similar

by JH Davenport - Related articles

[PDF] The Computational Challenges of public-key cryptography James ...
File Format: PDF/Adobe Acrobat - View

James Davenport. Dept. {Computer,Mathematical} Science{,s}. University of Bath.

J.H.Davenport@bath.ac.uk. Public Key Cryptography. Two main methods: ...

staff.bath.ac.uk/masjhd/BICS-paper.pdf - Similar

by PK Cryptography - Related articles - All 2 versions

Google

james davenport bath - Google Search http://www.google.co.uk/search?hl=en&source=hp&q=james+davenport+bath&meta=&aq=3&o...

1 of 2 20/09/2009 17:20

How do we decide which pages to choose

(It isn’t luck!)

The basic idea is obvious, with hindsight.
Choose the page with more links to it.

A B
↓ ↘ ↓
C D

Obviously D is more popular than C .

How do we decide which pages to choose

(It isn’t luck!)
The basic idea is obvious,

with hindsight.
Choose the page with more links to it.

A B
↓ ↘ ↓
C D

Obviously D is more popular than C .

How do we decide which pages to choose

(It isn’t luck!)
The basic idea is obvious, with hindsight.
Choose the page with more links to it.

A B
↓ ↘ ↓
C D

Obviously D is more popular than C .

How do we decide which pages to choose

(It isn’t luck!)
The basic idea is obvious, with hindsight.
Choose the page with more links to it.

A B
↓ ↘ ↓
C D

Obviously D is more popular than C .

How do we decide which pages to choose

(It isn’t luck!)
The basic idea is obvious, with hindsight.
Choose the page with more links to it.

A B
↓ ↘ ↓
C D

Obviously D is more popular than C .

But the Web is much more complicated!

A B
↓ ↘ ↓
C D
↓ ↓
E F
↓ ↓
G H

E and F each have only one link to them, but, since D is more
popular than C , we should regard F as more popular than E (and
H as more popular than G).

But the Web is much more complicated!

A B
↓ ↘ ↓
C D
↓ ↓
E F
↓ ↓
G H

E and F each have only one link to them, but, since D is more
popular than C , we should regard F as more popular than E (and
H as more popular than G).

But the Web is much more complicated!

A B
↓ ↘ ↓
C D
↓ ↓
E F
↓ ↓
G H

E and F each have only one link to them, but, since D is more
popular than C , we should regard F as more popular than E (and
H as more popular than G).

But the Web is much more complicated!

And constantly changing.

A B
↓ ↘ ↓
C D
↓ ↙ ↓
E F
↓ ↓
G H

Now E is more popular than F . And G is more popular than H,
even though nothing has changed for G itself.

But the Web is much more complicated!

And constantly changing.

A B
↓ ↘ ↓
C D
↓ ↙ ↓
E F
↓ ↓
G H

Now E is more popular than F . And G is more popular than H,
even though nothing has changed for G itself.

But the Web is much more complicated!

And constantly changing.

A B
↓ ↘ ↓
C D
↓ ↙ ↓
E F
↓ ↓
G H

Now E is more popular than F .

And G is more popular than H,
even though nothing has changed for G itself.

But the Web is much more complicated!

And constantly changing.

A B
↓ ↘ ↓
C D
↓ ↙ ↓
E F
↓ ↓
G H

Now E is more popular than F . And G is more popular than H,

even though nothing has changed for G itself.

But the Web is much more complicated!

And constantly changing.

A B
↓ ↘ ↓
C D
↓ ↙ ↓
E F
↓ ↓
G H

Now E is more popular than F . And G is more popular than H,
even though nothing has changed for G itself.

But the Web is much much more complicated!

1. The real Web contains (lots of) loops.

2. The real Web is utterly massive — no-one, not even Google,
really knows how big.

3. The real Web keeps changing.

4. The real Web is commercially valuable, so there are incentives
to manipulate it.

But the Web is much much more complicated!

1. The real Web contains (lots of) loops.

2. The real Web is utterly massive — no-one, not even Google,
really knows how big.

3. The real Web keeps changing.

4. The real Web is commercially valuable, so there are incentives
to manipulate it.

But the Web is much much more complicated!

1. The real Web contains (lots of) loops.

2. The real Web is utterly massive — no-one, not even Google,
really knows how big.

3. The real Web keeps changing.

4. The real Web is commercially valuable, so there are incentives
to manipulate it.

But the Web is much much more complicated!

1. The real Web contains (lots of) loops.

2. The real Web is utterly massive — no-one, not even Google,
really knows how big.

3. The real Web keeps changing.

4. The real Web is commercially valuable, so there are incentives
to manipulate it.

But the Web is much much more complicated!

1. The real Web contains (lots of) loops.

2. The real Web is utterly massive — no-one, not even Google,
really knows how big.

3. The real Web keeps changing.

4. The real Web is commercially valuable, so there are incentives
to manipulate it.

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page,

which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it,

which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it

Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.

These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.

The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved,

and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner.

It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.

Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!

So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

The real Web contains loops

Nevertheless, we could, in principle write down a set of (linear)
equations for the popularity of each page, which would depend on
the popularity of the pages which linked to it, which would depend
on the popularity of the pages which linked to it
Then we could solve these equations.
These equations have a name: they are the equations for the
principal eigenvector of the connectivity matrix of the Web.
The genius of Brin and Page was to realise that these equations
could be solved, and in a distributed and iterative manner. It’s
known as the “Page Rank” algorithm.
Solving these equations is what makes Google work!
So it’s not really “I’m feeling lucky”, it’s “I believe in
eigenvectors”!

Flow in the Internet

Assume the routers R1 and R2 have total capacity 1 each.

A1 B1

↓ ↓
C1 → R1 → R2 → C2

↓ ↓
A2 B2

What is the best way of allocating bandwidth to the various flows
A1 → A2, B1 → B2 and C1 → C2?
Of course, it all depends what you mean by “best”.

Flow in the Internet

Assume the routers R1 and R2 have total capacity 1 each.

A1 B1

↓ ↓
C1 → R1 → R2 → C2

↓ ↓
A2 B2

What is the best way of allocating bandwidth to the various flows
A1 → A2, B1 → B2 and C1 → C2?

Of course, it all depends what you mean by “best”.

Flow in the Internet

Assume the routers R1 and R2 have total capacity 1 each.

A1 B1

↓ ↓
C1 → R1 → R2 → C2

↓ ↓
A2 B2

What is the best way of allocating bandwidth to the various flows
A1 → A2, B1 → B2 and C1 → C2?
Of course, it all depends what you mean by “best”.

Network Most Efficient

A and B each get 1, and C nothing.

A1 B1

↓ 1 ↓ 1

C1
0
−→ R1

0
−→ R2

0
−→ C2

↓ 1 ↓ 1
A2 B2

Total flow 2, but C might feel aggrieved.

Network Most Efficient

A and B each get 1, and C nothing.

A1 B1

↓ 1 ↓ 1

C1
0
−→ R1

0
−→ R2

0
−→ C2

↓ 1 ↓ 1
A2 B2

Total flow 2, but C might feel aggrieved.

Network Most Efficient

A and B each get 1, and C nothing.

A1 B1

↓ 1 ↓ 1

C1
0
−→ R1

0
−→ R2

0
−→ C2

↓ 1 ↓ 1
A2 B2

Total flow 2, but C might feel aggrieved.

Max–min Fairness

The worst-off person gets as much as possible.
Each flow gets 1/2.

A1 B1

↓ 1/2 ↓ 1/2

C1
1/2
−→ R1

1/2
−→ R2

1/2
−→ C2

↓ 1/2 ↓ 1/2
A2 B2

Total flow 1.5, but C is getting twice as much routing done for
him as A and B are.
A and B might feel aggrieved.

Max–min Fairness

The worst-off person gets as much as possible.

Each flow gets 1/2.

A1 B1

↓ 1/2 ↓ 1/2

C1
1/2
−→ R1

1/2
−→ R2

1/2
−→ C2

↓ 1/2 ↓ 1/2
A2 B2

Total flow 1.5, but C is getting twice as much routing done for
him as A and B are.
A and B might feel aggrieved.

Max–min Fairness

The worst-off person gets as much as possible.
Each flow gets 1/2.

A1 B1

↓ 1/2 ↓ 1/2

C1
1/2
−→ R1

1/2
−→ R2

1/2
−→ C2

↓ 1/2 ↓ 1/2
A2 B2

Total flow 1.5, but C is getting twice as much routing done for
him as A and B are.
A and B might feel aggrieved.

Max–min Fairness

The worst-off person gets as much as possible.
Each flow gets 1/2.

A1 B1

↓ 1/2 ↓ 1/2

C1
1/2
−→ R1

1/2
−→ R2

1/2
−→ C2

↓ 1/2 ↓ 1/2
A2 B2

Total flow 1.5, but C is getting twice as much routing done for
him as A and B are.

A and B might feel aggrieved.

Max–min Fairness

The worst-off person gets as much as possible.
Each flow gets 1/2.

A1 B1

↓ 1/2 ↓ 1/2

C1
1/2
−→ R1

1/2
−→ R2

1/2
−→ C2

↓ 1/2 ↓ 1/2
A2 B2

Total flow 1.5, but C is getting twice as much routing done for
him as A and B are.
A and B might feel aggrieved.

Proportional Fairness

Each flow gets the same amount of effort from the routers.
A and B each get 2/3, and C gets 1/3.

A1 B1

↓ 2/3 ↓ 2/3

C1
1/3
−→ R1

1/3
−→ R2

1/3
−→ C2

↓ 2/3 ↓ 2/3
A2 B2

Total flow is now 5
3 ≈ 1.66, better than max-min, but not as good

as the flow where C gets nothing.

Proportional Fairness

Each flow gets the same amount of effort from the routers.

A and B each get 2/3, and C gets 1/3.

A1 B1

↓ 2/3 ↓ 2/3

C1
1/3
−→ R1

1/3
−→ R2

1/3
−→ C2

↓ 2/3 ↓ 2/3
A2 B2

Total flow is now 5
3 ≈ 1.66, better than max-min, but not as good

as the flow where C gets nothing.

Proportional Fairness

Each flow gets the same amount of effort from the routers.
A and B each get 2/3, and C gets 1/3.

A1 B1

↓ 2/3 ↓ 2/3

C1
1/3
−→ R1

1/3
−→ R2

1/3
−→ C2

↓ 2/3 ↓ 2/3
A2 B2

Total flow is now 5
3 ≈ 1.66, better than max-min, but not as good

as the flow where C gets nothing.

Proportional Fairness

Each flow gets the same amount of effort from the routers.
A and B each get 2/3, and C gets 1/3.

A1 B1

↓ 2/3 ↓ 2/3

C1
1/3
−→ R1

1/3
−→ R2

1/3
−→ C2

↓ 2/3 ↓ 2/3
A2 B2

Total flow is now 5
3 ≈ 1.66, better than max-min, but not as good

as the flow where C gets nothing.

But in the real world

▶ Routers and links have widely different capacities

▶ The network is much more complicated, and always changing

▶ No-one has overall knowledge of the flows.

Nevertheless, the purely local algorithm devised by van Jacobsen
(earlier; published 1988) was shown in 1997 to converge to
proportional fairness.

But in the real world

▶ Routers and links have widely different capacities

▶ The network is much more complicated, and always changing

▶ No-one has overall knowledge of the flows.

Nevertheless, the purely local algorithm devised by van Jacobsen
(earlier; published 1988) was shown in 1997 to converge to
proportional fairness.

But in the real world

▶ Routers and links have widely different capacities

▶ The network is much more complicated, and always changing

▶ No-one has overall knowledge of the flows.

Nevertheless, the purely local algorithm devised by van Jacobsen
(earlier; published 1988) was shown in 1997 to converge to
proportional fairness.

But in the real world

▶ Routers and links have widely different capacities

▶ The network is much more complicated, and always changing

▶ No-one has overall knowledge of the flows.

Nevertheless, the purely local algorithm devised by van Jacobsen
(earlier; published 1988) was shown in 1997 to converge to
proportional fairness.

But in the real world

▶ Routers and links have widely different capacities

▶ The network is much more complicated, and always changing

▶ No-one has overall knowledge of the flows.

Nevertheless, the purely local algorithm devised by van Jacobsen
(earlier; published 1988) was shown in 1997 to converge to
proportional fairness.

But in the real world

▶ Routers and links have widely different capacities

▶ The network is much more complicated, and always changing

▶ No-one has overall knowledge of the flows.

Nevertheless, the purely local algorithm devised by van Jacobsen
(earlier; published 1988) was shown in 1997 to converge to
proportional fairness.

Numbers rather than Padlocks (I)

A wishes to send x to B.

A and B each think of a random number, say a and b.

A’s action Message B’s action
multiply x by a

xa
↘

multiply message by b
xba = xab
↙

divide message by a
xb
↘

divide message by b

In practice, to avoid guessing, and numerical errors, x , a and b are
whole numbers modulo some large prime p.

Numbers rather than Padlocks (I)

A wishes to send x to B.
A and B each think of a random number, say a and b.

A’s action Message B’s action
multiply x by a

xa
↘

multiply message by b
xba = xab
↙

divide message by a
xb
↘

divide message by b

In practice, to avoid guessing, and numerical errors, x , a and b are
whole numbers modulo some large prime p.

Numbers rather than Padlocks (I)

A wishes to send x to B.
A and B each think of a random number, say a and b.

A’s action Message B’s action
multiply x by a

xa
↘

multiply message by b
xba = xab
↙

divide message by a
xb
↘

divide message by b

In practice, to avoid guessing, and numerical errors, x , a and b are
whole numbers modulo some large prime p.

Numbers rather than Padlocks (I)

A wishes to send x to B.
A and B each think of a random number, say a and b.

A’s action Message B’s action
multiply x by a

xa
↘

multiply message by b
xba = xab
↙

divide message by a
xb
↘

divide message by b

In practice, to avoid guessing, and numerical errors, x , a and b are
whole numbers modulo some large prime p.

Numbers rather than Padlocks (I) — snag

A’s action Message B’s action
multiply x by a

xa
↘

multiply message by b
xba = xab
↙

divide message by a
xb
↘

divide message by b

Eavesdropper computes xa ⋅ xb
xab = x .

So replacing the padlocks by numbers has given the eavesdropper
the chance of doing arithmetic.

Numbers rather than Padlocks (I) — snag

A’s action Message B’s action
multiply x by a

xa
↘

multiply message by b
xba = xab
↙

divide message by a
xb
↘

divide message by b

Eavesdropper computes xa ⋅ xb
xab

= x .
So replacing the padlocks by numbers has given the eavesdropper
the chance of doing arithmetic.

Numbers rather than Padlocks (I) — snag

A’s action Message B’s action
multiply x by a

xa
↘

multiply message by b
xba = xab
↙

divide message by a
xb
↘

divide message by b

Eavesdropper computes xa ⋅ xb
xab = x .

So replacing the padlocks by numbers has given the eavesdropper
the chance of doing arithmetic.

Numbers rather than Padlocks (I) — snag

A’s action Message B’s action
multiply x by a

xa
↘

multiply message by b
xba = xab
↙

divide message by a
xb
↘

divide message by b

Eavesdropper computes xa ⋅ xb
xab = x .

So replacing the padlocks by numbers has given the eavesdropper
the chance of doing arithmetic.

Numbers rather than Padlocks (II)

Let’s be more subtle.

A’s action Message B’s action
raise x to power a

xa

↘
raise message to power b

(xb)a = (xa)b

↙
take ath root of message

xb

↘
take bth root of message

Surely this frustrates the eavesdropper?

Numbers rather than Padlocks (II)

Let’s be more subtle.

A’s action Message B’s action
raise x to power a

xa

↘
raise message to power b

(xb)a = (xa)b

↙
take ath root of message

xb

↘
take bth root of message

Surely this frustrates the eavesdropper?

Numbers rather than Padlocks (II)

Let’s be more subtle.

A’s action Message B’s action
raise x to power a

xa

↘
raise message to power b

(xb)a = (xa)b

↙
take ath root of message

xb

↘
take bth root of message

Surely this frustrates the eavesdropper?

But what about logarithms?

A’s action Message B’s action
raise x to power a

xa

↘
raise message to power b

(xb)a = (xa)b

↙
take ath root of message

xb

↘
take bth root of message

Eavesdropper computes
log(xa) ⋅ log(xb)

log(xab)

=
a log(x) ⋅ b log(x)

ab log(x)
= log(x).

Essentially the same trick as before, but with logarithms!

But what about logarithms?

A’s action Message B’s action
raise x to power a

xa

↘
raise message to power b

(xb)a = (xa)b

↙
take ath root of message

xb

↘
take bth root of message

Eavesdropper computes
log(xa) ⋅ log(xb)

log(xab)
=

a log(x) ⋅ b log(x)
ab log(x)

= log(x).

Essentially the same trick as before, but with logarithms!

But what about logarithms?

A’s action Message B’s action
raise x to power a

xa

↘
raise message to power b

(xb)a = (xa)b

↙
take ath root of message

xb

↘
take bth root of message

Eavesdropper computes
log(xa) ⋅ log(xb)

log(xab)
=

a log(x) ⋅ b log(x)
ab log(x)

= log(x).

Essentially the same trick as before, but with logarithms!

But what about logarithms?

A’s action Message B’s action
raise x to power a

xa

↘
raise message to power b

(xb)a = (xa)b

↙
take ath root of message

xb

↘
take bth root of message

Eavesdropper computes
log(xa) ⋅ log(xb)

log(xab)
=

a log(x) ⋅ b log(x)
ab log(x)

= log(x).

Essentially the same trick as before, but with logarithms!

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

Do logarithms exist?

Remember that we are working modulo a large prime p.

For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40

So log(125) = 3, but 125 = 3 ⋅ 41 + 2≡ 2 since we are working
modulo 41.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40

So log(125) = 3, but 125 = 3 ⋅ 41 + 2

≡ 2 since we are working
modulo 41.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40

So log(125) = 3, but 125 = 3 ⋅ 41 + 2≡ 2 since we are working
modulo 41.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40

And we can fill in: 10 = 2 ⋅ 5, so log(10) = 4. Also 4 = 2 ⋅ 2 so
log(4) = 3 + 3 = 6.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40

And we can fill in: 10 = 2 ⋅ 5, so log(10) = 4.

Also 4 = 2 ⋅ 2 so
log(4) = 3 + 3 = 6.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 1

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40

And we can fill in: 10 = 2 ⋅ 5, so log(10) = 4. Also 4 = 2 ⋅ 2 so
log(4) = 3 + 3 = 6.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 6 1 9 4

11 12 13 14 15 16 17 18 19 20
12 7

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40
15

40 = 2 ⋅ 20, so log(40) = log(2) + log(20) = 3 + 7 = 10.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 6 1 9 4

11 12 13 14 15 16 17 18 19 20
12 7

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40
15

40 = 2 ⋅ 20, so log(40) = log(2) + log(20) = 3 + 7 = 10.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 6 1 9 4

11 12 13 14 15 16 17 18 19 20
12 7

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40
15 10

80 = 2 ⋅ 40, so log(80) = 13, but 80 ≡ 39, and so on

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 6 1 9 4

11 12 13 14 15 16 17 18 19 20
12 7

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40
15 10

80 = 2 ⋅ 40, so log(80) = 13, but 80 ≡ 39, and so on

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 6 1 9 4

11 12 13 14 15 16 17 18 19 20
12 7

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40
15 19 16 13 10

But 2 ⋅ 33 = 66 ≡ 25, so we deduce that log 25 ought to be 22.

Do logarithms exist?

Remember that we are working modulo a large prime p. For
simplicity, I will take p = 41, since it’s small enough, and logs base
5, so that log(5) = 1.

1 2 3 4 5 6 7 8 9 10
0 3 6 1 9 4

11 12 13 14 15 16 17 18 19 20
12 7

21 22 23 24 25 26 27 28 29 30
2

31 32 33 34 35 36 37 38 39 40
15 19 16 13 10

But 2 ⋅ 33 = 66 ≡ 25, so we deduce that log 25 ought to be 22.

Logs aren’t as simple as we thought!

If we continue this process, we find that we have logarithms of only
half the numbers, but each one has two values, e.g. 25 seems to
be 2 and 22.
A fatal snag? Not really.

▶ There’s a workround, which is messy, but not really difficult.

▶ If we’d chosen a different base, say 7, then we would have
logarithms of every non-zero number.

However, for suitable p, computing “discrete” logarithms is
sufficiently hard that we can be sure of the safety of this scheme.

Logs aren’t as simple as we thought!

If we continue this process, we find that we have logarithms of only
half the numbers, but each one has two values, e.g. 25 seems to
be 2 and 22.

A fatal snag? Not really.

▶ There’s a workround, which is messy, but not really difficult.

▶ If we’d chosen a different base, say 7, then we would have
logarithms of every non-zero number.

However, for suitable p, computing “discrete” logarithms is
sufficiently hard that we can be sure of the safety of this scheme.

Logs aren’t as simple as we thought!

If we continue this process, we find that we have logarithms of only
half the numbers, but each one has two values, e.g. 25 seems to
be 2 and 22.
A fatal snag?

Not really.

▶ There’s a workround, which is messy, but not really difficult.

▶ If we’d chosen a different base, say 7, then we would have
logarithms of every non-zero number.

However, for suitable p, computing “discrete” logarithms is
sufficiently hard that we can be sure of the safety of this scheme.

Logs aren’t as simple as we thought!

If we continue this process, we find that we have logarithms of only
half the numbers, but each one has two values, e.g. 25 seems to
be 2 and 22.
A fatal snag? Not really.

▶ There’s a workround, which is messy, but not really difficult.

▶ If we’d chosen a different base, say 7, then we would have
logarithms of every non-zero number.

However, for suitable p, computing “discrete” logarithms is
sufficiently hard that we can be sure of the safety of this scheme.

Logs aren’t as simple as we thought!

If we continue this process, we find that we have logarithms of only
half the numbers, but each one has two values, e.g. 25 seems to
be 2 and 22.
A fatal snag? Not really.

▶ There’s a workround, which is messy, but not really difficult.

▶ If we’d chosen a different base, say 7, then we would have
logarithms of every non-zero number.

However, for suitable p, computing “discrete” logarithms is
sufficiently hard that we can be sure of the safety of this scheme.

Logs aren’t as simple as we thought!

If we continue this process, we find that we have logarithms of only
half the numbers, but each one has two values, e.g. 25 seems to
be 2 and 22.
A fatal snag? Not really.

▶ There’s a workround, which is messy, but not really difficult.

▶ If we’d chosen a different base, say 7, then we would have
logarithms of every non-zero number.

However, for suitable p, computing “discrete” logarithms is
sufficiently hard that we can be sure of the safety of this scheme.

Logs aren’t as simple as we thought!

If we continue this process, we find that we have logarithms of only
half the numbers, but each one has two values, e.g. 25 seems to
be 2 and 22.
A fatal snag? Not really.

▶ There’s a workround, which is messy, but not really difficult.

▶ If we’d chosen a different base, say 7, then we would have
logarithms of every non-zero number.

However, for suitable p, computing “discrete” logarithms is
sufficiently hard that we can be sure of the safety of this scheme.

But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.

But it takes three messages

Can we do better?

Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.

But it takes three messages

Can we do better? Let x be a public number.

Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.

But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.

But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.

But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.

This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.

But it takes three messages

Can we do better? Let x be a public number.
Again, A and B choose random numbers a and b.

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙↘

raise message to power a raise message to power b
(xb)a (xa)b

Now they are both in possession of (xa)b = (xb)a, which can be
used as the key for any standard cipher.
This is one reason why secure websites display a padlock: to
assure you that they have gone through this process between your
browser and the web site.

A few lessons

1. Always check for the padlock, which indicates that the data
should be secure between you and the far end.

2. If possible, use your browser — your laptop/ BlackBerry/
whatever is safer than a browser in an Internet cafe.

3. If you do use an Internet cafe, make sure you reboot the
machine afterwards — not a guarantee, but definitely safer.

A few lessons

1. Always check for the padlock, which indicates that the data
should be secure between you and the far end.

2. If possible, use your browser — your laptop/ BlackBerry/
whatever is safer than a browser in an Internet cafe.

3. If you do use an Internet cafe, make sure you reboot the
machine afterwards — not a guarantee, but definitely safer.

A few lessons

1. Always check for the padlock, which indicates that the data
should be secure between you and the far end.

2. If possible, use your browser — your laptop/ BlackBerry/
whatever is safer than a browser in an Internet cafe.

3. If you do use an Internet cafe, make sure you reboot the
machine afterwards — not a guarantee, but definitely safer.

A few lessons

1. Always check for the padlock, which indicates that the data
should be secure between you and the far end.

2. If possible, use your browser — your laptop/ BlackBerry/
whatever is safer than a browser in an Internet cafe.

3. If you do use an Internet cafe, make sure you reboot the
machine afterwards — not a guarantee, but definitely safer.

