
Processes

So we have these five main states: New, Ready, Running,
Blocked and Exit, and a process will be moved by the OS
between them

A new process will begin in the state New

A process just finished will be in the state Exit

In between the OS must decide, as part of its scheduling,
where to place each process

There is a standard finite state machine that describes the
allowed transitions between states
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Processes

A typical transition is

1. The OS decides to schedule a process on the ready list
2. The process is dispatched, i.e., the OS marks its state as

running and starts executing it (jump and drop privilege)
3. The process may choose to voluntarily suspend itself:

relinquish (e.g., a clock program displaying the time might
suspend itself for a minute)

4. Or an interrupt may arise, e.g., from a packet arriving on
the network card, or a key being hit on the keyboard

5. Or a timer interrupt may happen when the process has
used its time slice. In any of these three cases the OS
moves the process to the Ready state
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6. Or the running process may need some resource the OS
must supply (e.g., for disk access) so it does a syscall and
must wait until the resource is ready (e.g., the disk returns
some data); the OS moves it to Blocked

7. In the case of a blocked process, perhaps data has
returned from the disk and the process can wake up and
become Ready again. Note that the process won’t
necessarily start running immediately, it is just ready to run
when it gets its chance

And to make it clear: it’s not the processes moving themselves
between the states, it’s the OS moving them between the lists
of processes in each state
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Processes

Remember, early OSs without timer interrupts had to rely on
processes relinquishing control every once in a while:
cooperative multitasking

User programs running on such OSs had to be explictly written
to be cooperative

And so were often not

For example, Windows 3.1, MacOS 9

Exercise. Write a program that voluntarily relinquishes
occasionally
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Processes

New and Exit states happen just once per process

• New. For a process just created, perhaps code and data
are not yet loaded into memory. The OS datastructures
needed to manage the process have been created and
filled in

• Exit. For a process that has just finished. Some tidying up
is usually needed after a process ends, such as closing
files or reclaiming memory or other resources it used



Processes

New and Exit states happen just once per process

• New. For a process just created, perhaps code and data
are not yet loaded into memory. The OS datastructures
needed to manage the process have been created and
filled in

• Exit. For a process that has just finished. Some tidying up
is usually needed after a process ends, such as closing
files or reclaiming memory or other resources it used



Processes

New and Exit states happen just once per process

• New. For a process just created, perhaps code and data
are not yet loaded into memory. The OS datastructures
needed to manage the process have been created and
filled in

• Exit. For a process that has just finished. Some tidying up
is usually needed after a process ends, such as closing
files or reclaiming memory or other resources it used



Processes

A real example:

USER PID PPID PRI %CPU %MEM STAT TIME COMMAND

rjb 3974 4831 22 0.0 0.1 R+ 00:00:00 ps

rjb 4495 4831 24 0.0 2.0 S 00:01:11 emacs

rjb 4538 4530 23 0.0 0.2 Ss+ 00:00:00 bash

rjb 4540 4534 24 0.0 0.2 Ss 00:00:00 bash

rjb 4664 4556 21 0.0 0.6 S+ 00:00:08 pine

rjb 4831 4829 24 0.0 0.2 Ss+ 00:00:00 bash

rjb 7839 4831 15 0.0 0.1 Ss 00:00:00 firefox

rjb 7851 7839 14 0.0 0.1 S 00:00:00 run-mozilla.sh

rjb 7856 7851 24 0.2 16.6 Sl 00:31:47 firefox-bin

rjb 14880 1 16 0.0 3.1 Dsl 00:06:43 recollindex

Example processes under Linux



Processes

• S. Sleeping: like blocked (interruptible sleep; waiting for an
event like a timer or other interrupt)

• D. Disk wait (uninterruptible sleep; waiting for requested
I/O)

• R. Running or ready to run
• It is hard to catch new and exiting processes

s: session leader; +: foreground process group; l: multithreaded
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Other columns of interest

• User. The user who owns the process
• PRI. Priority. In Linux, priorities are integers, larger

indicates less important
• PID. Process identifier. An integer that uniquely identifies

this process
• PPID. Parent PID. The PID of the process that started this

process. This allows processes to be grouped in trees.
Process number 1 is the parent of all processes

• CPU, MEM, TIME. How much of these resources this
process is using
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Processes

So we can see some more of the information that a process
needs to collect and maintain:

• User identifiers (userids)
• A priority
• Statistics like memory and CPU used
• The state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB
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To pause and restart a process (e.g., on an interrupt) requires
the saving and restoring of the process state: CPU registers,
stack pointers, MMU flags, etc.

This will also be stored in the PCB

So process handling is very similar to the way interrupts are
handled
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