
Scheduling

We now look at scheduling: how to choose which process to
run next

This is an extremely difficult problem and still has not been
solved to everybody’s satisfaction



Scheduling

We now look at scheduling: how to choose which process to
run next

This is an extremely difficult problem and still has not been
solved to everybody’s satisfaction



Scheduling

A list of scheduling algorithms, from Wikipedia:

Borrowed-Virtual-Time Scheduling (BVT), Completely Fair Scheduler (CFS), Critical
Path Method of Scheduling, Deadline-monotonic scheduling (DMS), Deficit round robin
(DRR), Dominant Sequence Clustering (DSC), Earliest deadline first scheduling (EDF),
Elastic Round Robin, Fair-share scheduling, First In, First Out (FIFO), also known as
First Come First Served (FCFS), Gang scheduling, Genetic Anticipatory, Highest
response ratio next (HRRN), Interval scheduling, Last In, First Out (LIFO), Job Shop
Scheduling (see Job shops), Least-connection scheduling, Least slack time scheduling
(LST), List scheduling, Lottery Scheduling, Multilevel queue, Multilevel Feedback
Queue, Never queue scheduling, O(1) scheduler, Proportional Share Scheduling,
Rate-monotonic scheduling (RMS), Round-robin scheduling (RR), Shortest expected
delay scheduling, Shortest job next (SJN), Shortest remaining time (SRT), Staircase
Deadline scheduler (SD), “Take” Scheduling, Two-level scheduling, Weighted fair
queuing (WFQ), Weighted least-connection scheduling, Weighted round robin (WRR),
Group Ratio Round-Robin: O(1)



Scheduling

A list of scheduling algorithms, from Wikipedia:

Borrowed-Virtual-Time Scheduling (BVT), Completely Fair Scheduler (CFS), Critical
Path Method of Scheduling, Deadline-monotonic scheduling (DMS), Deficit round robin
(DRR), Dominant Sequence Clustering (DSC), Earliest deadline first scheduling (EDF),
Elastic Round Robin, Fair-share scheduling, First In, First Out (FIFO), also known as
First Come First Served (FCFS), Gang scheduling, Genetic Anticipatory, Highest
response ratio next (HRRN), Interval scheduling, Last In, First Out (LIFO), Job Shop
Scheduling (see Job shops), Least-connection scheduling, Least slack time scheduling
(LST), List scheduling, Lottery Scheduling, Multilevel queue, Multilevel Feedback
Queue, Never queue scheduling, O(1) scheduler, Proportional Share Scheduling,
Rate-monotonic scheduling (RMS), Round-robin scheduling (RR), Shortest expected
delay scheduling, Shortest job next (SJN), Shortest remaining time (SRT), Staircase
Deadline scheduler (SD), “Take” Scheduling, Two-level scheduling, Weighted fair
queuing (WFQ), Weighted least-connection scheduling, Weighted round robin (WRR),
Group Ratio Round-Robin: O(1)



Scheduling

And they are just the ones people can be bothered to write
about on Wikipedia



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process
• Try to make interactive processes respond in human

timescales
• Try to give as much computation time as possible to

compute-heavy processes
• Ensuring critical real-time processes are dealt with before

it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time

• and no starvation of any process
• Try to make interactive processes respond in human

timescales
• Try to give as much computation time as possible to

compute-heavy processes
• Ensuring critical real-time processes are dealt with before

it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process

• Try to make interactive processes respond in human
timescales

• Try to give as much computation time as possible to
compute-heavy processes

• Ensuring critical real-time processes are dealt with before
it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process
• Try to make interactive processes respond in human

timescales

• Try to give as much computation time as possible to
compute-heavy processes

• Ensuring critical real-time processes are dealt with before
it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process
• Try to make interactive processes respond in human

timescales
• Try to give as much computation time as possible to

compute-heavy processes

• Ensuring critical real-time processes are dealt with before
it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process
• Try to make interactive processes respond in human

timescales
• Try to give as much computation time as possible to

compute-heavy processes
• Ensuring critical real-time processes are dealt with before

it is too late



Scheduling

• Try to service peripherals in a timely way

• Understanding the various requirements of hardware: mice
and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs
and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs
and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs
and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs
and networks

• Try to make best use of the hardware and use it efficiently

• Try to make behaviour predictable: we don’t want wildly
erratic behaviour

• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs
and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour

• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs
and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load

• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs
and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load
• And so on



Scheduling

And do it all quickly!



Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!



Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!



Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!



Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used
• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used
• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used

• Memory used
• Disk used
• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used

• Disk used
• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used

• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used
• Network used

• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used
• Network used
• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish
• Real-time; we must deal with this data now else the car will

crash (deadlines)
• Money; we’ve been given money to get this data ready in

the next hour
• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time

• Turnaround; response time: interactive response is snappy
or sluggish

• Real-time; we must deal with this data now else the car will
crash (deadlines)

• Money; we’ve been given money to get this data ready in
the next hour

• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish

• Real-time; we must deal with this data now else the car will
crash (deadlines)

• Money; we’ve been given money to get this data ready in
the next hour

• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish
• Real-time; we must deal with this data now else the car will

crash (deadlines)

• Money; we’ve been given money to get this data ready in
the next hour

• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish
• Real-time; we must deal with this data now else the car will

crash (deadlines)
• Money; we’ve been given money to get this data ready in

the next hour

• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish
• Real-time; we must deal with this data now else the car will

crash (deadlines)
• Money; we’ve been given money to get this data ready in

the next hour
• Etc.



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!


