
Scheduling
Algorithms

We now look a just a few of the simplest scheduling algorithms

Exercise. Have a look at textbooks for gruesome detail on the
relative performances of these algorithms



Scheduling
Algorithms

We now look a just a few of the simplest scheduling algorithms

Exercise. Have a look at textbooks for gruesome detail on the
relative performances of these algorithms



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation

• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking

• Poor interaction with other hardware; can’t process while
printing (recall spooling)

• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)

• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking

• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput

• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average

• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved

• Difficult to estimate time-to-completion, so reliant on the
job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking

• Uses round-robin or similar to choose another task on
relinquish

• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish

• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity

• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes

• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation
• Better interactivity than cooperative systems
• Not good for either interactive or real-time; may have to

wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation
• Better interactivity than cooperative systems
• Not good for either interactive or real-time; may have to

wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking

• Gives interactive processes the same time as compute
processes

• No starvation
• Better interactivity than cooperative systems
• Not good for either interactive or real-time; may have to

wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes

• No starvation
• Better interactivity than cooperative systems
• Not good for either interactive or real-time; may have to

wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation

• Better interactivity than cooperative systems
• Not good for either interactive or real-time; may have to

wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation
• Better interactivity than cooperative systems

• Not good for either interactive or real-time; may have to
wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation
• Better interactivity than cooperative systems
• Not good for either interactive or real-time; may have to

wait a long time for a slice of time



Scheduling
Algorithms

Round Robin

More suited to systems where all the processes are of equal (or
nearly equal) importance; e.g., dedicated appliances like
network routers that have to decide how share network
capacity fairly



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs

• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput

• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved

• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time
• Interactive processes get good attention as they use

relatively little CPU
• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time
• Interactive processes get good attention as they use

relatively little CPU
• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time

• Interactive processes get good attention as they use
relatively little CPU

• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time
• Interactive processes get good attention as they use

relatively little CPU

• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time
• Interactive processes get good attention as they use

relatively little CPU
• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency



Scheduling
Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency



Scheduling
Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency



Scheduling
Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency



Scheduling
Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: it might move
between the two over time



Scheduling
Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: it might move
between the two over time



Scheduling
Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: it might move
between the two over time



Scheduling
Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: it might move
between the two over time



Scheduling
Algorithms

Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!



Scheduling
Algorithms

Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!



Scheduling
Algorithms

Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!



Scheduling
Algorithms

Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!



Scheduling
Algorithms

Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

Dynamic priority =
time so far in system

cpu used so far

• A process executes repeated time slices until its priority
drops below that of another process

• Tries to avoid starvation
• Long jobs will eventually get a slice



Scheduling
Algorithms

Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

Dynamic priority =
time so far in system

cpu used so far

• A process executes repeated time slices until its priority
drops below that of another process

• Tries to avoid starvation
• Long jobs will eventually get a slice



Scheduling
Algorithms

Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

Dynamic priority =
time so far in system

cpu used so far

• A process executes repeated time slices until its priority
drops below that of another process

• Tries to avoid starvation
• Long jobs will eventually get a slice



Scheduling
Algorithms

Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

Dynamic priority =
time so far in system

cpu used so far

• A process executes repeated time slices until its priority
drops below that of another process

• Tries to avoid starvation
• Long jobs will eventually get a slice



Scheduling
Algorithms

Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

Dynamic priority =
time so far in system

cpu used so far

• A process executes repeated time slices until its priority
drops below that of another process

• Tries to avoid starvation

• Long jobs will eventually get a slice



Scheduling
Algorithms

Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

Dynamic priority =
time so far in system

cpu used so far

• A process executes repeated time slices until its priority
drops below that of another process

• Tries to avoid starvation
• Long jobs will eventually get a slice



Scheduling
Algorithms

Highest Response Ratio Next

• New jobs get immediate attention as CPU time is near 0

• But now critical shorter jobs might not finish in time as they
could get scheduled after a long-waiting job

• This needs frequent re-evaluation of priorities to get good
behaviour, which implies small timeslices, and so lots of
scheduling overhead



Scheduling
Algorithms

Highest Response Ratio Next

• New jobs get immediate attention as CPU time is near 0
• But now critical shorter jobs might not finish in time as they

could get scheduled after a long-waiting job

• This needs frequent re-evaluation of priorities to get good
behaviour, which implies small timeslices, and so lots of
scheduling overhead



Scheduling
Algorithms

Highest Response Ratio Next

• New jobs get immediate attention as CPU time is near 0
• But now critical shorter jobs might not finish in time as they

could get scheduled after a long-waiting job
• This needs frequent re-evaluation of priorities to get good

behaviour, which implies small timeslices, and so lots of
scheduling overhead


