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Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers
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Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information
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Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time
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processes
• No starvation
• Better interactivity than cooperative systems
• Not good for either interactive or real-time; may have to

wait a long time for a slice of time
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Round Robin

More suited to systems where all the processes are of equal (or
nearly equal) importance; e.g., dedicated appliances like
network routers that have to decide how share network
capacity fairly
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time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times
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points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency
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At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: it might move
between the two over time
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Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!
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Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

Dynamic priority =
time so far in system

cpu used so far

• A process executes repeated time slices until its priority
drops below that of another process

• Tries to avoid starvation
• Long jobs will eventually get a slice
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Highest Response Ratio Next

• New jobs get immediate attention as CPU time is near 0

• But now critical shorter jobs might not finish in time as they
could get scheduled after a long-waiting job

• This needs frequent re-evaluation of priorities to get good
behaviour, which implies small timeslices, and so lots of
scheduling overhead
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