
Scheduling
Algorithms

Traditional Unix scheduling

As used in older Unix derivatives — modern scheduling is
much more sophisticated

Everything is based on timer interrupts every 1/60th second

A priority is computed from the CPU use of each process

Priority = base priority +
CPU time used

2



Scheduling
Algorithms

Traditional Unix scheduling

As used in older Unix derivatives — modern scheduling is
much more sophisticated

Everything is based on timer interrupts every 1/60th second

A priority is computed from the CPU use of each process

Priority = base priority +
CPU time used

2



Scheduling
Algorithms

Traditional Unix scheduling

As used in older Unix derivatives — modern scheduling is
much more sophisticated

Everything is based on timer interrupts every 1/60th second

A priority is computed from the CPU use of each process

Priority = base priority +
CPU time used

2



Scheduling
Algorithms

Traditional Unix scheduling

As used in older Unix derivatives — modern scheduling is
much more sophisticated

Everything is based on timer interrupts every 1/60th second

A priority is computed from the CPU use of each process

Priority = base priority +
CPU time used

2



Scheduling
Algorithms

Traditional Unix scheduling

As used in older Unix derivatives — modern scheduling is
much more sophisticated

Everything is based on timer interrupts every 1/60th second

A priority is computed from the CPU use of each process

Priority = base priority +
CPU time used

2



Scheduling
Algorithms

Traditional Unix scheduling

A process with the smallest priority value is chosen next (thus –
mostly — a process that has used less CPU)

Processes of the same priority are treated round robin

Note that this is actually very similar in effect to Multilevel
Feedback Queueing where a priority of n corresponds to RQn

The base priority depends on whether this is a system process
or a user process, with user priority being lower (i.e., with a
larger value)



Scheduling
Algorithms

Traditional Unix scheduling

A process with the smallest priority value is chosen next (thus –
mostly — a process that has used less CPU)

Processes of the same priority are treated round robin

Note that this is actually very similar in effect to Multilevel
Feedback Queueing where a priority of n corresponds to RQn

The base priority depends on whether this is a system process
or a user process, with user priority being lower (i.e., with a
larger value)



Scheduling
Algorithms

Traditional Unix scheduling

A process with the smallest priority value is chosen next (thus –
mostly — a process that has used less CPU)

Processes of the same priority are treated round robin

Note that this is actually very similar in effect to Multilevel
Feedback Queueing where a priority of n corresponds to RQn

The base priority depends on whether this is a system process
or a user process, with user priority being lower (i.e., with a
larger value)



Scheduling
Algorithms

Traditional Unix scheduling

A process with the smallest priority value is chosen next (thus –
mostly — a process that has used less CPU)

Processes of the same priority are treated round robin

Note that this is actually very similar in effect to Multilevel
Feedback Queueing where a priority of n corresponds to RQn

The base priority depends on whether this is a system process
or a user process, with user priority being lower (i.e., with a
larger value)



Scheduling
Algorithms

The CPU use of a process is recorded and halved every
second: this decays the influence of CPU usage over time and
makes the priority based on recent behaviour

This algorithm gives more attention to processes that have
used less CPU recently, e.g., interactive and I/O processes

Priority = base priority +
decayed CPU time

2



Scheduling
Algorithms

The CPU use of a process is recorded and halved every
second: this decays the influence of CPU usage over time and
makes the priority based on recent behaviour

This algorithm gives more attention to processes that have
used less CPU recently, e.g., interactive and I/O processes

Priority = base priority +
decayed CPU time

2



Scheduling
Algorithms

The CPU use of a process is recorded and halved every
second: this decays the influence of CPU usage over time and
makes the priority based on recent behaviour

This algorithm gives more attention to processes that have
used less CPU recently, e.g., interactive and I/O processes

Priority = base priority +
decayed CPU time

2



Scheduling
Algorithms

Traditional Unix scheduling

Processes can choose to be nice

Generally, −20 ≤ nice ≤ 19, but only certain users
(administrators) can use negative nices

Priority = base priority +
decayed CPU time

2
+ nice

A process that has nice −20 can really jam up the system

But nice also enables a purchased priority



Scheduling
Algorithms

Traditional Unix scheduling

Processes can choose to be nice

Generally, −20 ≤ nice ≤ 19, but only certain users
(administrators) can use negative nices

Priority = base priority +
decayed CPU time

2
+ nice

A process that has nice −20 can really jam up the system

But nice also enables a purchased priority



Scheduling
Algorithms

Traditional Unix scheduling

Processes can choose to be nice

Generally, −20 ≤ nice ≤ 19, but only certain users
(administrators) can use negative nices

Priority = base priority +
decayed CPU time

2
+ nice

A process that has nice −20 can really jam up the system

But nice also enables a purchased priority



Scheduling
Algorithms

Traditional Unix scheduling

Processes can choose to be nice

Generally, −20 ≤ nice ≤ 19, but only certain users
(administrators) can use negative nices

Priority = base priority +
decayed CPU time

2
+ nice

A process that has nice −20 can really jam up the system

But nice also enables a purchased priority



Scheduling
Algorithms

Traditional Unix scheduling

Processes can choose to be nice

Generally, −20 ≤ nice ≤ 19, but only certain users
(administrators) can use negative nices

Priority = base priority +
decayed CPU time

2
+ nice

A process that has nice −20 can really jam up the system

But nice also enables a purchased priority



Scheduling
Algorithms

Traditional Unix scheduling

There are a few problems with the traditional technique

The priorities were recomputed once per second, all in a single
pass, taking a significant chunk of time (on old machines)

It does not respond quickly enough to dynamic changes in the
system

And does not scale to large numbers of processes

So this is not used in modern systems, where many 100s of
processes is common



Scheduling
Algorithms

Traditional Unix scheduling

There are a few problems with the traditional technique

The priorities were recomputed once per second, all in a single
pass, taking a significant chunk of time (on old machines)

It does not respond quickly enough to dynamic changes in the
system

And does not scale to large numbers of processes

So this is not used in modern systems, where many 100s of
processes is common



Scheduling
Algorithms

Traditional Unix scheduling

There are a few problems with the traditional technique

The priorities were recomputed once per second, all in a single
pass, taking a significant chunk of time (on old machines)

It does not respond quickly enough to dynamic changes in the
system

And does not scale to large numbers of processes

So this is not used in modern systems, where many 100s of
processes is common



Scheduling
Algorithms

Traditional Unix scheduling

There are a few problems with the traditional technique

The priorities were recomputed once per second, all in a single
pass, taking a significant chunk of time (on old machines)

It does not respond quickly enough to dynamic changes in the
system

And does not scale to large numbers of processes

So this is not used in modern systems, where many 100s of
processes is common



Scheduling
Algorithms

Traditional Unix scheduling

There are a few problems with the traditional technique

The priorities were recomputed once per second, all in a single
pass, taking a significant chunk of time (on old machines)

It does not respond quickly enough to dynamic changes in the
system

And does not scale to large numbers of processes

So this is not used in modern systems, where many 100s of
processes is common



Scheduling
Algorithms

Fair Share Scheduling

And there are other problems that should be addressed

Modern machines can support many users simultaneously:
what happens if user A has 9 processes and user B just 1?

Should A get 90% of the CPU time and B 10%?

Fair share scheduling is where each user (or group or other
collective entity) gets a fair share, rather than each process



Scheduling
Algorithms

Fair Share Scheduling

And there are other problems that should be addressed

Modern machines can support many users simultaneously:
what happens if user A has 9 processes and user B just 1?

Should A get 90% of the CPU time and B 10%?

Fair share scheduling is where each user (or group or other
collective entity) gets a fair share, rather than each process



Scheduling
Algorithms

Fair Share Scheduling

And there are other problems that should be addressed

Modern machines can support many users simultaneously:
what happens if user A has 9 processes and user B just 1?

Should A get 90% of the CPU time and B 10%?

Fair share scheduling is where each user (or group or other
collective entity) gets a fair share, rather than each process



Scheduling
Algorithms

Fair Share Scheduling

And there are other problems that should be addressed

Modern machines can support many users simultaneously:
what happens if user A has 9 processes and user B just 1?

Should A get 90% of the CPU time and B 10%?

Fair share scheduling is where each user (or group or other
collective entity) gets a fair share, rather than each process



Scheduling
Algorithms

Fair share Scheduling in Unix

Recall processes are collected in groups in a tree

Priority = base priority +
CPU time used by process

2
+

CPU time used by process group
2

+ nice



Scheduling
Algorithms

Fair share Scheduling in Unix

Recall processes are collected in groups in a tree

Priority = base priority +
CPU time used by process

2
+

CPU time used by process group
2

+ nice



Scheduling
Algorithms

Fair share Scheduling in Unix

Modern Unix derivatives use much better, and much more
complicated, scheduling algorithms than this

They can afford to be more complicated as CPUs are now
much faster

Exercise. Read up on O(1) scheduling and The Completely
Fair Scheduler

Also have a look at scheduling for real-time systems: for when
a process must absolutely get scheduled within a given time



Scheduling
Algorithms

Fair share Scheduling in Unix

Modern Unix derivatives use much better, and much more
complicated, scheduling algorithms than this

They can afford to be more complicated as CPUs are now
much faster

Exercise. Read up on O(1) scheduling and The Completely
Fair Scheduler

Also have a look at scheduling for real-time systems: for when
a process must absolutely get scheduled within a given time



Scheduling
Algorithms

Fair share Scheduling in Unix

Modern Unix derivatives use much better, and much more
complicated, scheduling algorithms than this

They can afford to be more complicated as CPUs are now
much faster

Exercise. Read up on O(1) scheduling and The Completely
Fair Scheduler

Also have a look at scheduling for real-time systems: for when
a process must absolutely get scheduled within a given time



Scheduling
Algorithms

Fair share Scheduling in Unix

Modern Unix derivatives use much better, and much more
complicated, scheduling algorithms than this

They can afford to be more complicated as CPUs are now
much faster

Exercise. Read up on O(1) scheduling and The Completely
Fair Scheduler

Also have a look at scheduling for real-time systems: for when
a process must absolutely get scheduled within a given time


