
Deadlock
Avoidance

In contrast, deadlock avoidance does not break the conditions,
but rather is careful not to do anything that might possibly
create a deadlock in the future

For each request, we have to decide whether granting the
resource will potentially lead to a deadlock immediately or in
the future

Not so easy, as it requires knowing what might possibly happen
in the future

An unsafe request will not be granted by the OS
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The Banker’s Algorithm

This algorithm, proposed by Dijkstra, is an example of how to
do deadlock avoidance

The name comes from the concept of a bank lending money
and then having it repaid

It makes two tests

1. Feasibility test. To see if a request is possible
2. Safety test. To see if a request is safe (cannot lead to

deadlock)
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Note that a request that is feasible but not safe implies a
resource is lying idle

But we are erring on the side of safety at the cost of efficiency
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A request is feasible if, after granting the request, the total of
allocated resource does not exceed the actual resource

That is, if we can actually satisfy the request. Don’t allocate
10GB of memory if you only have 2GB

Sometimes it can be all-or-nothing: allocate access to the
sound card, or not
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A state is safe if there is at least one possible future sequence
of resource allocations and releases by which all processes can
complete their computation (never deadlock)

So make sure there is always an escape route of allocations
and releases

More than one route is better, but make sure there is at least
one

A request is safe if, after granting the request, this leads to a
safe state
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Dijkstra’s Banking Algorithm:

Grant an allocation request only if this leads to a safe
state

This will ensure we are always deadlock-free, but can
sometimes deny an allocation that might have been OK: it
might have caused a deadlock, but by chance didn’t happen to
do so on some particular occasion
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need to know
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• The maximum allocation that process might ever want
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Example. There are 12GB of memory and three processes
sharing it

Current Maximum
allocation need

Process 1 1 4
Process 2 4 6
Process 3 5 8

Available 2
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This is a safe state because all three processes can finish: we
can demonstrate a path to completion for all processes
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Process 2 currently has 4GB, but might eventually need 6
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Available 12

Which can now finish
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Thus there exists a path to completion for all processes where
every process gets all the resources it might need: this is what
the Banker’s algorithm requires

This path may or may not be the actual one taken, e.g.,
Process 3 might exit without requiring that extra 3GB; this, of
course, leads to another safe state

But we still need to be careful with allocations, as it is possible
to move from a safe state to an unsafe one
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But an OS can’t rely on luck



Deadlock
Avoidance

The Banker’s Algorithm

There are several problems with this algorithm

• There must be a fixed number of resources to allocate: a
fair assumption, but not always true

• The population of processes must remain fixed: not in a
general-purpose OS

• Processes must know their maximum needs in advance:
very unlikely

• Safety detection is quite expensive to compute, particularly
with multiple resources

• It can sometimes refuse a request that could have turned
out to be OK (by luck, perhaps): this leads to idle resources
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