
Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

The chief method employed is to spot when the circular wait
happens

One method for deadlock detection uses resource request and
allocation graphs (RRAG)
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One of the units is now allocated to P1
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P1 R1 P2

P1 requests from R1, but it has no free units, so P1 will be
blocked
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P2P1

R1

R2

Circular Wait

P1 requests from R1, but it has been allocated to P2;
P2 requests from R2, but it has been allocated to R1:
deadlock
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So deadlock detection is just finding these kinds of loops in
RRAGs

This can be done by graph reduction

For each process repeatedly

1. Remove all request links from the process to resources
that are available (perhaps available after a reduction step)

2. When there are no requests links left, remove all links from
allocated units of resource to the process
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If we can reduce a RRAG by all processes, then there is no
deadlock

1. Removing request links to available resources is allocating
the requested resources to the process

2. Removing allocated links is the process finishing and
returning its resources

An example:
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there will be no deadlock
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Now P1’s requests can be granted

No more links, so this graph has been completely reduced and
there will be no deadlock
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Circular Wait

We can’t reduce this as no request links are removable

Thus this is deadlock

An advantage of this technique is that it isolates the parts that
are deadlocking: we can see them in the graph
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