
Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

The chief method employed is to spot when the circular wait
happens

One method for deadlock detection uses resource request and
allocation graphs (RRAG)

P1 R1

P1 requests a resource of type R1

Process

P1 R1

One of the units is now allocated to P1

Resource with three units of resource

RRAGs



Deadlock
Detection and Breaking

The chief method employed is to spot when the circular wait
happens

One method for deadlock detection uses resource request and
allocation graphs (RRAG)

P1 R1

P1 requests a resource of type R1

Process

P1 R1

One of the units is now allocated to P1

Resource with three units of resource

RRAGs



Deadlock
Detection and Breaking

The chief method employed is to spot when the circular wait
happens

One method for deadlock detection uses resource request and
allocation graphs (RRAG)

P1 R1

P1 requests a resource of type R1

Process

P1 R1

One of the units is now allocated to P1

Resource with three units of resource

RRAGs



Deadlock
Detection and Breaking

P1 R1 P2

P1 requests from R1, but it has no free units, so P1 will be
blocked



Deadlock
Detection and Breaking

P2P1

R1

R2

Circular Wait

P1 requests from R1, but it has been allocated to P2;
P2 requests from R2, but it has been allocated to R1:
deadlock



Deadlock
Detection and Breaking

So deadlock detection is just finding these kinds of loops in
RRAGs

This can be done by graph reduction

For each process repeatedly

1. Remove all request links from the process to resources
that are available (perhaps available after a reduction step)

2. When there are no requests links left, remove all links from
allocated units of resource to the process



Deadlock
Detection and Breaking

So deadlock detection is just finding these kinds of loops in
RRAGs

This can be done by graph reduction

For each process repeatedly

1. Remove all request links from the process to resources
that are available (perhaps available after a reduction step)

2. When there are no requests links left, remove all links from
allocated units of resource to the process



Deadlock
Detection and Breaking

So deadlock detection is just finding these kinds of loops in
RRAGs

This can be done by graph reduction

For each process repeatedly

1. Remove all request links from the process to resources
that are available (perhaps available after a reduction step)

2. When there are no requests links left, remove all links from
allocated units of resource to the process



Deadlock
Detection and Breaking

If we can reduce a RRAG by all processes, then there is no
deadlock

1. Removing request links to available resources is allocating
the requested resources to the process

2. Removing allocated links is the process finishing and
returning its resources

An example:



Deadlock
Detection and Breaking

If we can reduce a RRAG by all processes, then there is no
deadlock

1. Removing request links to available resources is allocating
the requested resources to the process

2. Removing allocated links is the process finishing and
returning its resources

An example:



Deadlock
Detection and Breaking

If we can reduce a RRAG by all processes, then there is no
deadlock

1. Removing request links to available resources is allocating
the requested resources to the process

2. Removing allocated links is the process finishing and
returning its resources

An example:



Deadlock
Detection and Breaking

If we can reduce a RRAG by all processes, then there is no
deadlock

1. Removing request links to available resources is allocating
the requested resources to the process

2. Removing allocated links is the process finishing and
returning its resources

An example:



Deadlock
Detection and Breaking

P1 P2

P3

R1

R2

A RAAG

No more links, so this graph has been completely reduced and
there will be no deadlock



Deadlock
Detection and Breaking

P1 P2

P3

R1

R2

We can satisfy P3’s requests (none)

No more links, so this graph has been completely reduced and
there will be no deadlock



Deadlock
Detection and Breaking

P1 P2

P3

R1

R2

Reduce P3’s allocations

No more links, so this graph has been completely reduced and
there will be no deadlock



Deadlock
Detection and Breaking

P1 P2

P3

R1

R2

We can satisfy P2’s requests

No more links, so this graph has been completely reduced and
there will be no deadlock



Deadlock
Detection and Breaking

P1 P2

P3

R1

R2

Reduce P2

No more links, so this graph has been completely reduced and
there will be no deadlock



Deadlock
Detection and Breaking

P1 P2

P3

R1

R2

Now P1’s requests can be granted

No more links, so this graph has been completely reduced and
there will be no deadlock



Deadlock
Detection and Breaking

P1 P2

P3

R1

R2

Reduce P1

No more links, so this graph has been completely reduced and
there will be no deadlock



Deadlock
Detection and Breaking

P1 P2

P3

R1

R2

Reduce P1

No more links, so this graph has been completely reduced and
there will be no deadlock



Deadlock
Detection and Breaking

P2P1

R1

R2

Circular Wait

We can’t reduce this as no request links are removable

Thus this is deadlock

An advantage of this technique is that it isolates the parts that
are deadlocking: we can see them in the graph



Deadlock
Detection and Breaking

P2P1

R1

R2

Circular Wait

We can’t reduce this as no request links are removable

Thus this is deadlock

An advantage of this technique is that it isolates the parts that
are deadlocking: we can see them in the graph



Deadlock
Detection and Breaking

P2P1

R1

R2

Circular Wait

We can’t reduce this as no request links are removable

Thus this is deadlock

An advantage of this technique is that it isolates the parts that
are deadlocking: we can see them in the graph


