Inter-Process Communication
Pipes

A pipe is an IPC mechanism provided by some OSs



Inter-Process Communication
Pipes

A pipe is an IPC mechanism provided by some OSs

Conceptually, a pipe connects two processes together, taking
output from one and feeding it as input to the other



Inter-Process Communication
Pipes

A pipe is an IPC mechanism provided by some OSs

Conceptually, a pipe connects two processes together, taking
output from one and feeding it as input to the other

Proc 1 Proc 2




Inter-Process Communication
Pipes

A pipe is an IPC mechanism provided by some OSs

Conceptually, a pipe connects two processes together, taking
output from one and feeding it as input to the other

keybd Proc 1 Proc 2 screen

This might be part of a larger pipeline



Inter-Process Communication
Pipes

A pipe is an IPC mechanism provided by some OSs

Conceptually, a pipe connects two processes together, taking
output from one and feeding it as input to the other

keybd Proc 1 Proc 2 screen

This might be part of a larger pipeline

And the pipes go via the kernel, not directly between processes



Inter-Process Communication
Pipes

Pipes have a fixed size: 4096 bytes is common



Inter-Process Communication
Pipes

Pipes have a fixed size: 4096 bytes is common

A writes to the pipe, B reads from the pipe and they do so
independently of each other



Inter-Process Communication
Pipes

Pipes have a fixed size: 4096 bytes is common

A writes to the pipe, B reads from the pipe and they do so
independently of each other

This is like the way we pass data via files



Inter-Process Communication
Pipes

Pipes have a fixed size: 4096 bytes is common

A writes to the pipe, B reads from the pipe and they do so
independently of each other

This is like the way we pass data via files

But pipes also provide synchronisation



Inter-Process Communication
Pipes

A writes bytes into the pipe: if the pipe gets full, A is blocked by
the OS until space is freed up by B reading some



Inter-Process Communication
Pipes

A writes bytes into the pipe: if the pipe gets full, A is blocked by
the OS until space is freed up by B reading some

B reads bytes from the pipe: if the pipe gets empty, B is blocked
by the OS until bytes are available by A writing some



Inter-Process Communication
Pipes

A writes bytes into the pipe: if the pipe gets full, A is blocked by
the OS until space is freed up by B reading some

B reads bytes from the pipe: if the pipe gets empty, B is blocked
by the OS until bytes are available by A writing some

Thus the scheduling of A and B can be affected



Inter-Process Communication
Pipes

A writes bytes into the pipe: if the pipe gets full, A is blocked by
the OS until space is freed up by B reading some

B reads bytes from the pipe: if the pipe gets empty, B is blocked
by the OS until bytes are available by A writing some

Thus the scheduling of A and B can be affected

Bytes are read out in the same order they were written in: FIFO



Inter-Process Communication
Pipes

A writes bytes into the pipe: if the pipe gets full, A is blocked by
the OS until space is freed up by B reading some

B reads bytes from the pipe: if the pipe gets empty, B is blocked
by the OS until bytes are available by A writing some

Thus the scheduling of A and B can be affected
Bytes are read out in the same order they were written in: FIFO

Note there are two kinds of communication here: (1) the data,
and (2) synchronisation on production/consumption of the data



Inter-Process Communication
Pipes

A pipe is implemented as a buffer (chunk of memory) held by
the kernel, not directly accessible by user processes



Inter-Process Communication
Pipes

A pipe is implemented as a buffer (chunk of memory) held by
the kernel, not directly accessible by user processes

A write to or read from the pipe involves a syscall



Inter-Process Communication
Pipes

A pipe is implemented as a buffer (chunk of memory) held by
the kernel, not directly accessible by user processes

A write to or read from the pipe involves a syscall

This is how the kernel can control blocking A and B, making
sure A does not overfill the buffer and making sure B is not
reading data that is not there



Inter-Process Communication

Pipes

B

/

\

memory

Implementation of a Pipe

User

Kernel



Inter-Process Communication
Pipes

A B User

/

\

Implementation of a Pipe

Kernel

memory

If A wants to write to the pipe, it makes a system call: the kernel
can check for space in the buffer and block A if necessary



Inter-Process Communication
Pipes

A B User

/

\

Implementation of a Pipe

Kernel

memory

If A wants to write to the pipe, it makes a system call: the kernel
can check for space in the buffer and block A if necessary

Symmetrically for B reading from the pipe



Inter-Process Communication
Pipes

Pipes are supported well by Unix and are very easy to create
and use when using a shell



Aside

A shell is just a program that waits for you to type something
and then possibly creates some new processes according to
what you typed: the command line interface

Popular with Unix derivatives, unpopular with Windows
derivatives



Inter-Process Communication
Pipes

Pipes are supported well by Unix and are very easy to create
and use when using a shell

% ps | sort



Inter-Process Communication
Pipes

Pipes are supported well by Unix and are very easy to create
and use when using a shell

% ps | sort

The % is the shell prompt; ps is the “list processes” command;
sort is a sorting program; the | is the notation for a pipe in this
shell



Inter-Process Communication
Pipes

Pipes are supported well by Unix and are very easy to create
and use when using a shell

% ps | sort

The % is the shell prompt; ps is the “list processes” command;
sort is a sorting program; the | is the notation for a pipe in this
shell

So this displays a sorted list of processes



Inter-Process Communication
Pipes

Pipes are also easy to create within programs: see the POSIX
function pipe



Aside

POSIX is a library standard: it contains a list of standard
functions that provide a simple and uniform front end to OS
syscalls (amongst doing useful other things) and describes
their expected behaviours, e.g., open, close and sqrt



Aside

POSIX is a library standard: it contains a list of standard
functions that provide a simple and uniform front end to OS
syscalls (amongst doing useful other things) and describes
their expected behaviours, e.g., open, close and sqrt

This helps portability between OSs by hiding some OS specific
details (e.g., details of syscalls)



Aside

POSIX is a library standard: it contains a list of standard
functions that provide a simple and uniform front end to OS
syscalls (amongst doing useful other things) and describes
their expected behaviours, e.g., open, close and sqrt

This helps portability between OSs by hiding some OS specific
details (e.g., details of syscalls)

Unix derivatives are usually mostly compliant, Windows less so



Aside

POSIX is a library standard: it contains a list of standard
functions that provide a simple and uniform front end to OS
syscalls (amongst doing useful other things) and describes
their expected behaviours, e.g., open, close and sqrt

This helps portability between OSs by hiding some OS specific
details (e.g., details of syscalls)

Unix derivatives are usually mostly compliant, Windows less so

Warning: remember some people regard such systems
libraries as part of the OS



Aside

POSIX is a library standard: it contains a list of standard
functions that provide a simple and uniform front end to OS
syscalls (amongst doing useful other things) and describes
their expected behaviours, e.g., open, close and sqrt

This helps portability between OSs by hiding some OS specific
details (e.g., details of syscalls)

Unix derivatives are usually mostly compliant, Windows less so

Warning: remember some people regard such systems
libraries as part of the OS

Even though they live and operate in user mode



Pipes

A typical sequence in a program is for a process to create a
pipe then create a child process (i.e., ask the kernel to create a
pipe then ask the kernel to make a new process)



Pipes

A typical sequence in a program is for a process to create a
pipe then create a child process (i.e., ask the kernel to create a
pipe then ask the kernel to make a new process)

(After a bit of technical fiddling) the pipe is now ready to use for
IPC between parent and child



Inter-Process Communication
Pipes

Pipes are



Inter-Process Communication
Pipes

Pipes are

e simple and efficient



Inter-Process Communication
Pipes

Pipes are

e simple and efficient
e easy to use from programs and from a shell



Inter-Process Communication
Pipes

Pipes are

e simple and efficient
e easy to use from programs and from a shell
¢ a powerful way of combining processes and programs



Inter-Process Communication
Pipes

Pipes are

e simple and efficient

e easy to use from programs and from a shell

¢ a powerful way of combining processes and programs
e used a great deal



Inter-Process Communication
Pipes

But also



Inter-Process Communication
Pipes

But also

e are unidirectional



Inter-Process Communication
Pipes

But also

e are unidirectional

e technical detail: are only between related processes.
Often one is the parent of the other



Inter-Process Communication
Pipes

But also

e are unidirectional

e technical detail: are only between related processes.
Often one is the parent of the other

e can trivially create deadlocks if you use them carelessly (A
creates a child process B with two pipes A—B and
B—A...)



Inter-Process Communication
Pipes

Pipes are so useful there have been a couple of extensions:



Inter-Process Communication
Pipes

Pipes are so useful there have been a couple of extensions:

e Named Pipes: these can can be shared by unrelated
processes (but have the naming problem that IPC using
files have)



Inter-Process Communication
Pipes

Pipes are so useful there have been a couple of extensions:

e Named Pipes: these can can be shared by unrelated
processes (but have the naming problem that IPC using
files have)

e Sockets: pipes between processes on different machines.
The basis of the Internet



Inter-Process Communication
Sockets

A socket allows bidirectional IPC between two processes (pipes
are unidirectional for mostly historical reasons)



Inter-Process Communication
Sockets

A socket allows bidirectional IPC between two processes (pipes
are unidirectional for mostly historical reasons)

The processes may be on the same or widely remote machines



Inter-Process Communication
Sockets

A socket allows bidirectional IPC between two processes (pipes
are unidirectional for mostly historical reasons)
The processes may be on the same or widely remote machines

The technical issues behind implementing sockets are clearly
much more complicated than basic pipes, but they present the
same kind of FIFO, byte oriented, blocking channel



Inter-Process Communication
Sockets

A socket allows bidirectional IPC between two processes (pipes
are unidirectional for mostly historical reasons)
The processes may be on the same or widely remote machines

The technical issues behind implementing sockets are clearly
much more complicated than basic pipes, but they present the
same kind of FIFO, byte oriented, blocking channel

We shall see some of those issues later in this Unit



Inter-Process Communication
Sockets

A socket allows bidirectional IPC between two processes (pipes
are unidirectional for mostly historical reasons)
The processes may be on the same or widely remote machines

The technical issues behind implementing sockets are clearly
much more complicated than basic pipes, but they present the
same kind of FIFO, byte oriented, blocking channel

We shall see some of those issues later in this Unit

A lot of the modern world is built on top of sockets!



