
Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when polling memory it can be hard to know if
you are reading the data you want or some previous junk
that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when polling memory it can be hard to know if
you are reading the data you want or some previous junk
that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when polling memory it can be hard to know if
you are reading the data you want or some previous junk
that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when polling memory it can be hard to know if
you are reading the data you want or some previous junk
that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

The speed of shared memory means that it is very good for
IPC, as long as it is supported by further mechanisms like
signals or semaphores to flag when data is ready

More on shared memory when we get to memory management

Exercise. Compare shared memory and pipes



Inter-Process Communication
Shared Memory

The speed of shared memory means that it is very good for
IPC, as long as it is supported by further mechanisms like
signals or semaphores to flag when data is ready

More on shared memory when we get to memory management

Exercise. Compare shared memory and pipes



Inter-Process Communication
Shared Memory

The speed of shared memory means that it is very good for
IPC, as long as it is supported by further mechanisms like
signals or semaphores to flag when data is ready

More on shared memory when we get to memory management

Exercise. Compare shared memory and pipes


