
Inter-Process Communication
Signals

A signal is a software equivalent of a hardware interrupt: they
can be sent to a process by the kernel or by a process

Also: raised and initiated

Just like a hardware interrupt, when a process receives a
signal, it stops what it currently doing and goes off to execute a
signal handler, in direct analogy with an interrupt handler

Handled within the user program: the signal handler is just
some code in the program, written by the programmer



Inter-Process Communication
Signals

A signal is a software equivalent of a hardware interrupt: they
can be sent to a process by the kernel or by a process

Also: raised and initiated

Just like a hardware interrupt, when a process receives a
signal, it stops what it currently doing and goes off to execute a
signal handler, in direct analogy with an interrupt handler

Handled within the user program: the signal handler is just
some code in the program, written by the programmer



Inter-Process Communication
Signals

A signal is a software equivalent of a hardware interrupt: they
can be sent to a process by the kernel or by a process

Also: raised and initiated

Just like a hardware interrupt, when a process receives a
signal, it stops what it currently doing and goes off to execute a
signal handler, in direct analogy with an interrupt handler

Handled within the user program: the signal handler is just
some code in the program, written by the programmer



Inter-Process Communication
Signals

A signal is a software equivalent of a hardware interrupt: they
can be sent to a process by the kernel or by a process

Also: raised and initiated

Just like a hardware interrupt, when a process receives a
signal, it stops what it currently doing and goes off to execute a
signal handler, in direct analogy with an interrupt handler

Handled within the user program: the signal handler is just
some code in the program, written by the programmer



Inter-Process Communication
Signals

Again, what we lazily say is not quite what really happens

When a signal is raised (which needs a syscall) the OS takes
over and notes the signal in the receiving process’ PCB

When the OS next runs that process, it jumps to the signal
handler code within the process, rather than to the place where
the process was preempted



Inter-Process Communication
Signals

Again, what we lazily say is not quite what really happens

When a signal is raised (which needs a syscall) the OS takes
over and notes the signal in the receiving process’ PCB

When the OS next runs that process, it jumps to the signal
handler code within the process, rather than to the place where
the process was preempted



Inter-Process Communication
Signals

Again, what we lazily say is not quite what really happens

When a signal is raised (which needs a syscall) the OS takes
over and notes the signal in the receiving process’ PCB

When the OS next runs that process, it jumps to the signal
handler code within the process, rather than to the place where
the process was preempted



Inter-Process Communication
Signals

A process can send a signal to another process (or even itself)
that has the same owner (same userid)

The normal restrictions on userids applies: only root can send
a signal to another user’s process

But remember that all signals are delivered to processes via the
kernel

The kernel can also itself initiate a signal, e.g., a signal to
indicate activity of a peripheral

Naturally, the kernel can send signals to any process



Inter-Process Communication
Signals

A process can send a signal to another process (or even itself)
that has the same owner (same userid)

The normal restrictions on userids applies: only root can send
a signal to another user’s process

But remember that all signals are delivered to processes via the
kernel

The kernel can also itself initiate a signal, e.g., a signal to
indicate activity of a peripheral

Naturally, the kernel can send signals to any process



Inter-Process Communication
Signals

A process can send a signal to another process (or even itself)
that has the same owner (same userid)

The normal restrictions on userids applies: only root can send
a signal to another user’s process

But remember that all signals are delivered to processes via the
kernel

The kernel can also itself initiate a signal, e.g., a signal to
indicate activity of a peripheral

Naturally, the kernel can send signals to any process



Inter-Process Communication
Signals

A process can send a signal to another process (or even itself)
that has the same owner (same userid)

The normal restrictions on userids applies: only root can send
a signal to another user’s process

But remember that all signals are delivered to processes via the
kernel

The kernel can also itself initiate a signal, e.g., a signal to
indicate activity of a peripheral

Naturally, the kernel can send signals to any process



Inter-Process Communication
Signals

A process can send a signal to another process (or even itself)
that has the same owner (same userid)

The normal restrictions on userids applies: only root can send
a signal to another user’s process

But remember that all signals are delivered to processes via the
kernel

The kernel can also itself initiate a signal, e.g., a signal to
indicate activity of a peripheral

Naturally, the kernel can send signals to any process



Inter-Process Communication
Signals

Use the POSIX function kill() to send a signal in a user
program

And functions like signal(), sigaction(), sigaddset() and
more to manage signals



Inter-Process Communication
Signals

Use the POSIX function kill() to send a signal in a user
program

And functions like signal(), sigaction(), sigaddset() and
more to manage signals



Inter-Process Communication
Signals

A signal is in essence a flag (a single bit), but there are many
different types of signal, e.g., HUP, INT, SEGV, KILL, PIPE, etc.,
to indicate different kinds of events

A process can, to some extent, choose how to react to a signal

• ignore it: that is, inform the kernel that it does not want to
receive a particular signal, so the kernel will not note
delivery in the PCB as above

• accept it and act on it: run the signal handler code
• suspend (voluntarily relinquish)
• terminate



Inter-Process Communication
Signals

A signal is in essence a flag (a single bit), but there are many
different types of signal, e.g., HUP, INT, SEGV, KILL, PIPE, etc.,
to indicate different kinds of events

A process can, to some extent, choose how to react to a signal

• ignore it: that is, inform the kernel that it does not want to
receive a particular signal, so the kernel will not note
delivery in the PCB as above

• accept it and act on it: run the signal handler code
• suspend (voluntarily relinquish)
• terminate



Inter-Process Communication
Signals

A signal is in essence a flag (a single bit), but there are many
different types of signal, e.g., HUP, INT, SEGV, KILL, PIPE, etc.,
to indicate different kinds of events

A process can, to some extent, choose how to react to a signal

• ignore it: that is, inform the kernel that it does not want to
receive a particular signal, so the kernel will not note
delivery in the PCB as above

• accept it and act on it: run the signal handler code
• suspend (voluntarily relinquish)
• terminate



Inter-Process Communication
Signals

A signal is in essence a flag (a single bit), but there are many
different types of signal, e.g., HUP, INT, SEGV, KILL, PIPE, etc.,
to indicate different kinds of events

A process can, to some extent, choose how to react to a signal

• ignore it: that is, inform the kernel that it does not want to
receive a particular signal, so the kernel will not note
delivery in the PCB as above

• accept it and act on it: run the signal handler code

• suspend (voluntarily relinquish)
• terminate



Inter-Process Communication
Signals

A signal is in essence a flag (a single bit), but there are many
different types of signal, e.g., HUP, INT, SEGV, KILL, PIPE, etc.,
to indicate different kinds of events

A process can, to some extent, choose how to react to a signal

• ignore it: that is, inform the kernel that it does not want to
receive a particular signal, so the kernel will not note
delivery in the PCB as above

• accept it and act on it: run the signal handler code
• suspend (voluntarily relinquish)

• terminate



Inter-Process Communication
Signals

A signal is in essence a flag (a single bit), but there are many
different types of signal, e.g., HUP, INT, SEGV, KILL, PIPE, etc.,
to indicate different kinds of events

A process can, to some extent, choose how to react to a signal

• ignore it: that is, inform the kernel that it does not want to
receive a particular signal, so the kernel will not note
delivery in the PCB as above

• accept it and act on it: run the signal handler code
• suspend (voluntarily relinquish)
• terminate



Inter-Process Communication
Signals

Some signals cannot be ignored or otherwise acted upon, in
particular a KILL signal, which always terminates the process
(i.e., that process will be moved to the exit state)

This is why signals are regulated by the kernel; a user can kill
their own processes, but not others’

And root (administrator) can kill any process

Signals are asynchronous, that is they might arrive at any point
during the running of the program

Programs that use signals must be written accordingly

(And they will always arrive at the most inconvenient time. . . )



Inter-Process Communication
Signals

Some signals cannot be ignored or otherwise acted upon, in
particular a KILL signal, which always terminates the process
(i.e., that process will be moved to the exit state)

This is why signals are regulated by the kernel; a user can kill
their own processes, but not others’

And root (administrator) can kill any process

Signals are asynchronous, that is they might arrive at any point
during the running of the program

Programs that use signals must be written accordingly

(And they will always arrive at the most inconvenient time. . . )



Inter-Process Communication
Signals

Some signals cannot be ignored or otherwise acted upon, in
particular a KILL signal, which always terminates the process
(i.e., that process will be moved to the exit state)

This is why signals are regulated by the kernel; a user can kill
their own processes, but not others’

And root (administrator) can kill any process

Signals are asynchronous, that is they might arrive at any point
during the running of the program

Programs that use signals must be written accordingly

(And they will always arrive at the most inconvenient time. . . )



Inter-Process Communication
Signals

Some signals cannot be ignored or otherwise acted upon, in
particular a KILL signal, which always terminates the process
(i.e., that process will be moved to the exit state)

This is why signals are regulated by the kernel; a user can kill
their own processes, but not others’

And root (administrator) can kill any process

Signals are asynchronous, that is they might arrive at any point
during the running of the program

Programs that use signals must be written accordingly

(And they will always arrive at the most inconvenient time. . . )



Inter-Process Communication
Signals

Some signals cannot be ignored or otherwise acted upon, in
particular a KILL signal, which always terminates the process
(i.e., that process will be moved to the exit state)

This is why signals are regulated by the kernel; a user can kill
their own processes, but not others’

And root (administrator) can kill any process

Signals are asynchronous, that is they might arrive at any point
during the running of the program

Programs that use signals must be written accordingly

(And they will always arrive at the most inconvenient time. . . )



Inter-Process Communication
Signals

Some signals cannot be ignored or otherwise acted upon, in
particular a KILL signal, which always terminates the process
(i.e., that process will be moved to the exit state)

This is why signals are regulated by the kernel; a user can kill
their own processes, but not others’

And root (administrator) can kill any process

Signals are asynchronous, that is they might arrive at any point
during the running of the program

Programs that use signals must be written accordingly

(And they will always arrive at the most inconvenient time. . . )



Inter-Process Communication
Signals

There exist default signal actions for each type of signal, but a
program must include its own handler functions if it wants to do
something other than the default action when it receives a
signal

When a process receives a signal, it stops what it is doing,
saves its state and calls the signal handler

Exercise. Rewrite the above sentence to describe what really
happens. (No program you have ever written includes code to
save its state!)

So this is very analogous to an OS interrupt

If and when the handler code finishes, the process continues
from where it was interrupted



Inter-Process Communication
Signals

There exist default signal actions for each type of signal, but a
program must include its own handler functions if it wants to do
something other than the default action when it receives a
signal

When a process receives a signal, it stops what it is doing,
saves its state and calls the signal handler

Exercise. Rewrite the above sentence to describe what really
happens. (No program you have ever written includes code to
save its state!)

So this is very analogous to an OS interrupt

If and when the handler code finishes, the process continues
from where it was interrupted



Inter-Process Communication
Signals

There exist default signal actions for each type of signal, but a
program must include its own handler functions if it wants to do
something other than the default action when it receives a
signal

When a process receives a signal, it stops what it is doing,
saves its state and calls the signal handler

Exercise. Rewrite the above sentence to describe what really
happens. (No program you have ever written includes code to
save its state!)

So this is very analogous to an OS interrupt

If and when the handler code finishes, the process continues
from where it was interrupted



Inter-Process Communication
Signals

There exist default signal actions for each type of signal, but a
program must include its own handler functions if it wants to do
something other than the default action when it receives a
signal

When a process receives a signal, it stops what it is doing,
saves its state and calls the signal handler

Exercise. Rewrite the above sentence to describe what really
happens. (No program you have ever written includes code to
save its state!)

So this is very analogous to an OS interrupt

If and when the handler code finishes, the process continues
from where it was interrupted



Inter-Process Communication
Signals

There exist default signal actions for each type of signal, but a
program must include its own handler functions if it wants to do
something other than the default action when it receives a
signal

When a process receives a signal, it stops what it is doing,
saves its state and calls the signal handler

Exercise. Rewrite the above sentence to describe what really
happens. (No program you have ever written includes code to
save its state!)

So this is very analogous to an OS interrupt

If and when the handler code finishes, the process continues
from where it was interrupted



Inter-Process Communication
Signals

Example signals

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT

17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU

25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH

29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN

35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4

39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12

47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14

51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10

55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6

59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX



Inter-Process Communication
Signals

• INT: a general interrupt

• ILL: sent by the kernel to a process when it has tried to use
a privileged or non-existent machine instruction

• KILL: non-ignorable terminate
• SEGV: sent by the kernel to a process when it has tried to

access memory it shouldn’t
• ALRM: a timer signal (not the preemption timer!)
• USR1 and USR2: signals for the use of user programs
• RT: a large number of signals are provided for real-time

processing
• Signals 32 and 33 are not used in the OS in this example



Inter-Process Communication
Signals

• INT: a general interrupt
• ILL: sent by the kernel to a process when it has tried to use

a privileged or non-existent machine instruction

• KILL: non-ignorable terminate
• SEGV: sent by the kernel to a process when it has tried to

access memory it shouldn’t
• ALRM: a timer signal (not the preemption timer!)
• USR1 and USR2: signals for the use of user programs
• RT: a large number of signals are provided for real-time

processing
• Signals 32 and 33 are not used in the OS in this example



Inter-Process Communication
Signals

• INT: a general interrupt
• ILL: sent by the kernel to a process when it has tried to use

a privileged or non-existent machine instruction
• KILL: non-ignorable terminate

• SEGV: sent by the kernel to a process when it has tried to
access memory it shouldn’t

• ALRM: a timer signal (not the preemption timer!)
• USR1 and USR2: signals for the use of user programs
• RT: a large number of signals are provided for real-time

processing
• Signals 32 and 33 are not used in the OS in this example



Inter-Process Communication
Signals

• INT: a general interrupt
• ILL: sent by the kernel to a process when it has tried to use

a privileged or non-existent machine instruction
• KILL: non-ignorable terminate
• SEGV: sent by the kernel to a process when it has tried to

access memory it shouldn’t

• ALRM: a timer signal (not the preemption timer!)
• USR1 and USR2: signals for the use of user programs
• RT: a large number of signals are provided for real-time

processing
• Signals 32 and 33 are not used in the OS in this example



Inter-Process Communication
Signals

• INT: a general interrupt
• ILL: sent by the kernel to a process when it has tried to use

a privileged or non-existent machine instruction
• KILL: non-ignorable terminate
• SEGV: sent by the kernel to a process when it has tried to

access memory it shouldn’t
• ALRM: a timer signal (not the preemption timer!)

• USR1 and USR2: signals for the use of user programs
• RT: a large number of signals are provided for real-time

processing
• Signals 32 and 33 are not used in the OS in this example



Inter-Process Communication
Signals

• INT: a general interrupt
• ILL: sent by the kernel to a process when it has tried to use

a privileged or non-existent machine instruction
• KILL: non-ignorable terminate
• SEGV: sent by the kernel to a process when it has tried to

access memory it shouldn’t
• ALRM: a timer signal (not the preemption timer!)
• USR1 and USR2: signals for the use of user programs

• RT: a large number of signals are provided for real-time
processing

• Signals 32 and 33 are not used in the OS in this example



Inter-Process Communication
Signals

• INT: a general interrupt
• ILL: sent by the kernel to a process when it has tried to use

a privileged or non-existent machine instruction
• KILL: non-ignorable terminate
• SEGV: sent by the kernel to a process when it has tried to

access memory it shouldn’t
• ALRM: a timer signal (not the preemption timer!)
• USR1 and USR2: signals for the use of user programs
• RT: a large number of signals are provided for real-time

processing

• Signals 32 and 33 are not used in the OS in this example



Inter-Process Communication
Signals

• INT: a general interrupt
• ILL: sent by the kernel to a process when it has tried to use

a privileged or non-existent machine instruction
• KILL: non-ignorable terminate
• SEGV: sent by the kernel to a process when it has tried to

access memory it shouldn’t
• ALRM: a timer signal (not the preemption timer!)
• USR1 and USR2: signals for the use of user programs
• RT: a large number of signals are provided for real-time

processing
• Signals 32 and 33 are not used in the OS in this example



Inter-Process Communication
Signals

Each signal has a default action

• INT, ILL, ALRM, SEGV, USR1, USR2: exit the program
• TSTP: suspend
• CONT: continue after a TSTP
• CHLD: ignore

Most default actions can be overridden by the program, some,
notably KILL, cannot



Inter-Process Communication
Signals

Each signal has a default action

• INT, ILL, ALRM, SEGV, USR1, USR2: exit the program

• TSTP: suspend
• CONT: continue after a TSTP
• CHLD: ignore

Most default actions can be overridden by the program, some,
notably KILL, cannot



Inter-Process Communication
Signals

Each signal has a default action

• INT, ILL, ALRM, SEGV, USR1, USR2: exit the program
• TSTP: suspend

• CONT: continue after a TSTP
• CHLD: ignore

Most default actions can be overridden by the program, some,
notably KILL, cannot



Inter-Process Communication
Signals

Each signal has a default action

• INT, ILL, ALRM, SEGV, USR1, USR2: exit the program
• TSTP: suspend
• CONT: continue after a TSTP

• CHLD: ignore

Most default actions can be overridden by the program, some,
notably KILL, cannot



Inter-Process Communication
Signals

Each signal has a default action

• INT, ILL, ALRM, SEGV, USR1, USR2: exit the program
• TSTP: suspend
• CONT: continue after a TSTP
• CHLD: ignore

Most default actions can be overridden by the program, some,
notably KILL, cannot



Inter-Process Communication
Signals

Each signal has a default action

• INT, ILL, ALRM, SEGV, USR1, USR2: exit the program
• TSTP: suspend
• CONT: continue after a TSTP
• CHLD: ignore

Most default actions can be overridden by the program, some,
notably KILL, cannot



Inter-Process Communication
Signals

Signals are

• Fast and efficient
• Asynchronous
• Used a very great deal
• Only transmit a small amount of information
• So often are used in concert with other IPC mechanisms
• Are a bit fiddly to program correctly



Inter-Process Communication
Signals

Signals are

• Fast and efficient

• Asynchronous
• Used a very great deal
• Only transmit a small amount of information
• So often are used in concert with other IPC mechanisms
• Are a bit fiddly to program correctly



Inter-Process Communication
Signals

Signals are

• Fast and efficient
• Asynchronous

• Used a very great deal
• Only transmit a small amount of information
• So often are used in concert with other IPC mechanisms
• Are a bit fiddly to program correctly



Inter-Process Communication
Signals

Signals are

• Fast and efficient
• Asynchronous
• Used a very great deal

• Only transmit a small amount of information
• So often are used in concert with other IPC mechanisms
• Are a bit fiddly to program correctly



Inter-Process Communication
Signals

Signals are

• Fast and efficient
• Asynchronous
• Used a very great deal
• Only transmit a small amount of information

• So often are used in concert with other IPC mechanisms
• Are a bit fiddly to program correctly



Inter-Process Communication
Signals

Signals are

• Fast and efficient
• Asynchronous
• Used a very great deal
• Only transmit a small amount of information
• So often are used in concert with other IPC mechanisms

• Are a bit fiddly to program correctly



Inter-Process Communication
Signals

Signals are

• Fast and efficient
• Asynchronous
• Used a very great deal
• Only transmit a small amount of information
• So often are used in concert with other IPC mechanisms
• Are a bit fiddly to program correctly


