
Inter-Process Communication
Semaphores

The action of process A waiting for process B to finish
something before A can continue is very common

E.g., waiting for data to be written to an area of shared memory

It is a very simple form of IPC

Signals can be used, but an alternative is to use a semaphore

A signal is appropriate when you want to continue computing
on something else while waiting; a semaphore is for pausing
and waiting (i.e., blocked)



Inter-Process Communication
Semaphores

The action of process A waiting for process B to finish
something before A can continue is very common

E.g., waiting for data to be written to an area of shared memory

It is a very simple form of IPC

Signals can be used, but an alternative is to use a semaphore

A signal is appropriate when you want to continue computing
on something else while waiting; a semaphore is for pausing
and waiting (i.e., blocked)



Inter-Process Communication
Semaphores

The action of process A waiting for process B to finish
something before A can continue is very common

E.g., waiting for data to be written to an area of shared memory

It is a very simple form of IPC

Signals can be used, but an alternative is to use a semaphore

A signal is appropriate when you want to continue computing
on something else while waiting; a semaphore is for pausing
and waiting (i.e., blocked)



Inter-Process Communication
Semaphores

The action of process A waiting for process B to finish
something before A can continue is very common

E.g., waiting for data to be written to an area of shared memory

It is a very simple form of IPC

Signals can be used, but an alternative is to use a semaphore

A signal is appropriate when you want to continue computing
on something else while waiting; a semaphore is for pausing
and waiting (i.e., blocked)



Inter-Process Communication
Semaphores

The action of process A waiting for process B to finish
something before A can continue is very common

E.g., waiting for data to be written to an area of shared memory

It is a very simple form of IPC

Signals can be used, but an alternative is to use a semaphore

A signal is appropriate when you want to continue computing
on something else while waiting; a semaphore is for pausing
and waiting (i.e., blocked)



Inter-Process Communication
Semaphores

Invented by Dijkstra, semaphores have been used widely for
may years

A semaphore is a variable whose value can only be accessed
and altered by two operations V and P (Dijkstra is Dutch)

Alternative names are: signal and wait; post and wait; raise and
lower; up and down; lock and unlock and others



Inter-Process Communication
Semaphores

Invented by Dijkstra, semaphores have been used widely for
may years

A semaphore is a variable whose value can only be accessed
and altered by two operations V and P (Dijkstra is Dutch)

Alternative names are: signal and wait; post and wait; raise and
lower; up and down; lock and unlock and others



Inter-Process Communication
Semaphores

Invented by Dijkstra, semaphores have been used widely for
may years

A semaphore is a variable whose value can only be accessed
and altered by two operations V and P (Dijkstra is Dutch)

Alternative names are: signal and wait; post and wait; raise and
lower; up and down; lock and unlock and others



Inter-Process Communication

Let S be a semaphore variable, usually residing in a chunk of
shared memory

Start with S = 1

P(S):
if S = 1 then set S = 0
else block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = 1

(There are many technical issues we are ignoring here. . . )



Inter-Process Communication

Let S be a semaphore variable, usually residing in a chunk of
shared memory

Start with S = 1

P(S):
if S = 1 then set S = 0
else block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = 1

(There are many technical issues we are ignoring here. . . )



Inter-Process Communication

Let S be a semaphore variable, usually residing in a chunk of
shared memory

Start with S = 1

P(S):
if S = 1 then set S = 0
else block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = 1

(There are many technical issues we are ignoring here. . . )



Inter-Process Communication

Let S be a semaphore variable, usually residing in a chunk of
shared memory

Start with S = 1

P(S):
if S = 1 then set S = 0
else block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = 1

(There are many technical issues we are ignoring here. . . )



Inter-Process Communication

Let S be a semaphore variable, usually residing in a chunk of
shared memory

Start with S = 1

P(S):
if S = 1 then set S = 0
else block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = 1

(There are many technical issues we are ignoring here. . . )



Inter-Process Communication
Semaphores

For synchronisation:

P(S) P(S) # wait for resource

...modify a resource... ...use resource...

V(S) V(S)

The second process will wait until the first has done a V to
signal the resource is ready



Inter-Process Communication
Semaphores

If multiple processes attempt a P(S) simultaneously only one
will succeed and continue; the others will be blocked

So if we have code like

wait(S)

some code

signal(S)

being run by multiple processes using the shared semaphore
S, only one process can execute the code at a time; the others
will be blocked and get their turn later

More suggestively using names signal and wait (not the same
signal as in signals, earlier!)



Inter-Process Communication
Semaphores

If multiple processes attempt a P(S) simultaneously only one
will succeed and continue; the others will be blocked

So if we have code like

P(S)

wait(S)

some code

V(S)

signal(S)

being run by multiple processes using the shared semaphore
S, only one process can execute the code at a time; the others
will be blocked and get their turn later

More suggestively using names signal and wait (not the same
signal as in signals, earlier!)



Inter-Process Communication
Semaphores

If multiple processes attempt a P(S) simultaneously only one
will succeed and continue; the others will be blocked

So if we have code like

wait(S)

some code

signal(S)

being run by multiple processes using the shared semaphore
S, only one process can execute the code at a time; the others
will be blocked and get their turn later

More suggestively using names signal and wait (not the same
signal as in signals, earlier!)



Inter-Process Communication
Semaphores

Generally, the code would be to access some shared resource
(often shared memory, e.g., B shouldn’t read until A has
finished writing), so the semaphore makes sure only one
process can access the resource at a time

The protected code is called a critical section: it is critical that
only one process runs it at a time

P(S) P(S)

...resource... ...same resource...

V(S) V(S)

To be effective, all accesses to the resource must be protected
by the semaphore



Inter-Process Communication
Semaphores

Generally, the code would be to access some shared resource
(often shared memory, e.g., B shouldn’t read until A has
finished writing), so the semaphore makes sure only one
process can access the resource at a time

The protected code is called a critical section: it is critical that
only one process runs it at a time

P(S) P(S)

...resource... ...same resource...

V(S) V(S)

To be effective, all accesses to the resource must be protected
by the semaphore



Inter-Process Communication
Semaphores

Generally, the code would be to access some shared resource
(often shared memory, e.g., B shouldn’t read until A has
finished writing), so the semaphore makes sure only one
process can access the resource at a time

The protected code is called a critical section: it is critical that
only one process runs it at a time

P(S) P(S)

...resource... ...same resource...

V(S) V(S)

To be effective, all accesses to the resource must be protected
by the semaphore



Inter-Process Communication
Semaphores

This is a binary semaphore, as it take just two values, 0 and 1

There is a simple generalisation to a counting semaphore

Start with S = n

P(S):
if S > 0 then set S = S − 1 else
block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = S + 1

This allows no more than n processes into the region at once



Inter-Process Communication
Semaphores

This is a binary semaphore, as it take just two values, 0 and 1

There is a simple generalisation to a counting semaphore

Start with S = n

P(S):
if S > 0 then set S = S − 1 else
block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = S + 1

This allows no more than n processes into the region at once



Inter-Process Communication
Semaphores

This is a binary semaphore, as it take just two values, 0 and 1

There is a simple generalisation to a counting semaphore

Start with S = n

P(S):
if S > 0 then set S = S − 1 else
block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = S + 1

This allows no more than n processes into the region at once



Inter-Process Communication
Semaphores

This is a binary semaphore, as it take just two values, 0 and 1

There is a simple generalisation to a counting semaphore

Start with S = n

P(S):
if S > 0 then set S = S − 1 else
block on S

V (S):
if one or more processes are blocking on S then allow one to
proceed
else set S = S + 1

This allows no more than n processes into the region at once



Inter-Process Communication
Semaphores

Semaphores were first used within OS kernels to protect
shared resources but can be used in user programs to protect
resources there, too: for example, a chunk of shared memory
(e.g., shared memory IPC)



Inter-Process Communication
Semaphores

Correct implementation of user mode semaphores is very hard

We have to ensure that it works even if

1. the process is rescheduled in the middle between the test
and the decrement of the count

2. there are multiple parallel processors accessing the
semaphore simultaneously

Exercise. Read about the implementation of semaphores



Inter-Process Communication
Semaphores

Correct implementation of user mode semaphores is very hard

We have to ensure that it works even if

1. the process is rescheduled in the middle between the test
and the decrement of the count

2. there are multiple parallel processors accessing the
semaphore simultaneously

Exercise. Read about the implementation of semaphores



Inter-Process Communication
Semaphores

Correct implementation of user mode semaphores is very hard

We have to ensure that it works even if

1. the process is rescheduled in the middle between the test
and the decrement of the count

2. there are multiple parallel processors accessing the
semaphore simultaneously

Exercise. Read about the implementation of semaphores



Inter-Process Communication
Semaphores

Correct implementation of user mode semaphores is very hard

We have to ensure that it works even if

1. the process is rescheduled in the middle between the test
and the decrement of the count

2. there are multiple parallel processors accessing the
semaphore simultaneously

Exercise. Read about the implementation of semaphores



Inter-Process Communication
Semaphores

Correct implementation of user mode semaphores is very hard

We have to ensure that it works even if

1. the process is rescheduled in the middle between the test
and the decrement of the count

2. there are multiple parallel processors accessing the
semaphore simultaneously

Exercise. Read about the implementation of semaphores



Inter-Process Communication
Semaphores

Semaphores are widely used

• each semaphore only needs a few bytes of shared memory
• they are small and fast given hardware support
• and OK in software
• used both in OSs and user programs to protect critical

resources
• and are widely available in POSIX libraries



Inter-Process Communication
Semaphores

Semaphores are widely used

• each semaphore only needs a few bytes of shared memory

• they are small and fast given hardware support
• and OK in software
• used both in OSs and user programs to protect critical

resources
• and are widely available in POSIX libraries



Inter-Process Communication
Semaphores

Semaphores are widely used

• each semaphore only needs a few bytes of shared memory
• they are small and fast given hardware support

• and OK in software
• used both in OSs and user programs to protect critical

resources
• and are widely available in POSIX libraries



Inter-Process Communication
Semaphores

Semaphores are widely used

• each semaphore only needs a few bytes of shared memory
• they are small and fast given hardware support
• and OK in software

• used both in OSs and user programs to protect critical
resources

• and are widely available in POSIX libraries



Inter-Process Communication
Semaphores

Semaphores are widely used

• each semaphore only needs a few bytes of shared memory
• they are small and fast given hardware support
• and OK in software
• used both in OSs and user programs to protect critical

resources

• and are widely available in POSIX libraries



Inter-Process Communication
Semaphores

Semaphores are widely used

• each semaphore only needs a few bytes of shared memory
• they are small and fast given hardware support
• and OK in software
• used both in OSs and user programs to protect critical

resources
• and are widely available in POSIX libraries



Inter-Process Communication
Semaphores

On the other hand, semaphores are a very low-level
mechanism and it is easy to cause deadlock

Suppose we have semaphore S1 protecting file F1 and
semaphore S2 protecting file F2. Process A wants to read from
F1 and write to F2, while process B wants to read from F2 and
write to F1

To make things consistent in the read/writes, both processes
must grab both semaphores

• Process A grabs semaphore S1

• Process B grabs semaphore S2

• A tries to grab S2 and blocks
• B tries to grab S1 blocks



Inter-Process Communication
Semaphores

On the other hand, semaphores are a very low-level
mechanism and it is easy to cause deadlock

Suppose we have semaphore S1 protecting file F1 and
semaphore S2 protecting file F2. Process A wants to read from
F1 and write to F2, while process B wants to read from F2 and
write to F1

To make things consistent in the read/writes, both processes
must grab both semaphores

• Process A grabs semaphore S1

• Process B grabs semaphore S2

• A tries to grab S2 and blocks
• B tries to grab S1 blocks



Inter-Process Communication
Semaphores

On the other hand, semaphores are a very low-level
mechanism and it is easy to cause deadlock

Suppose we have semaphore S1 protecting file F1 and
semaphore S2 protecting file F2. Process A wants to read from
F1 and write to F2, while process B wants to read from F2 and
write to F1

To make things consistent in the read/writes, both processes
must grab both semaphores

• Process A grabs semaphore S1

• Process B grabs semaphore S2

• A tries to grab S2 and blocks
• B tries to grab S1 blocks



Inter-Process Communication
Semaphores

On the other hand, semaphores are a very low-level
mechanism and it is easy to cause deadlock

Suppose we have semaphore S1 protecting file F1 and
semaphore S2 protecting file F2. Process A wants to read from
F1 and write to F2, while process B wants to read from F2 and
write to F1

To make things consistent in the read/writes, both processes
must grab both semaphores

• Process A grabs semaphore S1

• Process B grabs semaphore S2

• A tries to grab S2 and blocks
• B tries to grab S1 blocks



Inter-Process Communication
Semaphores

On the other hand, semaphores are a very low-level
mechanism and it is easy to cause deadlock

Suppose we have semaphore S1 protecting file F1 and
semaphore S2 protecting file F2. Process A wants to read from
F1 and write to F2, while process B wants to read from F2 and
write to F1

To make things consistent in the read/writes, both processes
must grab both semaphores

• Process A grabs semaphore S1

• Process B grabs semaphore S2

• A tries to grab S2 and blocks
• B tries to grab S1 blocks



Inter-Process Communication
Semaphores

On the other hand, semaphores are a very low-level
mechanism and it is easy to cause deadlock

Suppose we have semaphore S1 protecting file F1 and
semaphore S2 protecting file F2. Process A wants to read from
F1 and write to F2, while process B wants to read from F2 and
write to F1

To make things consistent in the read/writes, both processes
must grab both semaphores

• Process A grabs semaphore S1

• Process B grabs semaphore S2

• A tries to grab S2 and blocks

• B tries to grab S1 blocks



Inter-Process Communication
Semaphores

On the other hand, semaphores are a very low-level
mechanism and it is easy to cause deadlock

Suppose we have semaphore S1 protecting file F1 and
semaphore S2 protecting file F2. Process A wants to read from
F1 and write to F2, while process B wants to read from F2 and
write to F1

To make things consistent in the read/writes, both processes
must grab both semaphores

• Process A grabs semaphore S1

• Process B grabs semaphore S2

• A tries to grab S2 and blocks
• B tries to grab S1 blocks



Inter-Process Communication
Semaphores

Exercise. Identify the four conditions for deadlock in the above

Exercise: use a counting semaphore to solve the Dining
Philosopher’s problem


