
Inter-Process Communication
Application Level

Finally we look briefly at IPC at the application level, namely
high level mechanisms for passing data between processes

Again, at base, this goes via the kernel (often using a
mechanism we have already mentioned, e.g., pipes or shared
memory, assisted by signals or semaphores), but the idea is to
provide high level constructs so we (as programmers) don’t
have to be bothered with details

These are always implemented by system libraries and a fixed
interface presented to the programmer regardless of the
underlying implementation



Inter-Process Communication
Application Level

Finally we look briefly at IPC at the application level, namely
high level mechanisms for passing data between processes

Again, at base, this goes via the kernel (often using a
mechanism we have already mentioned, e.g., pipes or shared
memory, assisted by signals or semaphores), but the idea is to
provide high level constructs so we (as programmers) don’t
have to be bothered with details

These are always implemented by system libraries and a fixed
interface presented to the programmer regardless of the
underlying implementation



Inter-Process Communication
Application Level

Finally we look briefly at IPC at the application level, namely
high level mechanisms for passing data between processes

Again, at base, this goes via the kernel (often using a
mechanism we have already mentioned, e.g., pipes or shared
memory, assisted by signals or semaphores), but the idea is to
provide high level constructs so we (as programmers) don’t
have to be bothered with details

These are always implemented by system libraries and a fixed
interface presented to the programmer regardless of the
underlying implementation



Inter-Process Communication
Application Level

These came back into prominence with windowing GUIs where
it was found necessary for applications to communicate with
each other and with the system

Cut-and-paste and drag-and-drop are basic examples, where
structured information needs to pass between components
(processes)

The idea is much older than GUIs, of course: originally this was
called a software bus in analogy with hardware buses that
connect hardware components



Inter-Process Communication
Application Level

These came back into prominence with windowing GUIs where
it was found necessary for applications to communicate with
each other and with the system

Cut-and-paste and drag-and-drop are basic examples, where
structured information needs to pass between components
(processes)

The idea is much older than GUIs, of course: originally this was
called a software bus in analogy with hardware buses that
connect hardware components



Inter-Process Communication
Application Level

These came back into prominence with windowing GUIs where
it was found necessary for applications to communicate with
each other and with the system

Cut-and-paste and drag-and-drop are basic examples, where
structured information needs to pass between components
(processes)

The idea is much older than GUIs, of course: originally this was
called a software bus in analogy with hardware buses that
connect hardware components



Inter-Process Communication
Application Level

Popular implementations include

• CORBA (Common Object Request Broker Architecture)
• DCOP (Desktop COmmunication Protocol)
• Bonobo (based on CORBA)
• D-Bus
• COM (Component Object Model) and variants,

including .NET



Inter-Process Communication
Application Level

Popular implementations include

• CORBA (Common Object Request Broker Architecture)
• DCOP (Desktop COmmunication Protocol)
• Bonobo (based on CORBA)
• D-Bus
• COM (Component Object Model) and variants,

including .NET



Inter-Process Communication
Application Level

These try to be language independent with each language
having a set of bindings (standard functions) to access them

They focus on passing objects between components

So they need a standardised method of representing the
data/objects in a message

This is called message passing, another important paradigm for
IPC



Inter-Process Communication
Application Level

These try to be language independent with each language
having a set of bindings (standard functions) to access them

They focus on passing objects between components

So they need a standardised method of representing the
data/objects in a message

This is called message passing, another important paradigm for
IPC



Inter-Process Communication
Application Level

These try to be language independent with each language
having a set of bindings (standard functions) to access them

They focus on passing objects between components

So they need a standardised method of representing the
data/objects in a message

This is called message passing, another important paradigm for
IPC



Inter-Process Communication
Application Level

These try to be language independent with each language
having a set of bindings (standard functions) to access them

They focus on passing objects between components

So they need a standardised method of representing the
data/objects in a message

This is called message passing, another important paradigm for
IPC



Inter-Process Communication
Application Level

These kinds of framework tend to be very complicated as they
need to support a wide variety of communications between a
wide variety of components

For example, passing a picture from a program written in C to
one written in Java

Exercise. Read up on some of these



Inter-Process Communication
Application Level

These kinds of framework tend to be very complicated as they
need to support a wide variety of communications between a
wide variety of components

For example, passing a picture from a program written in C to
one written in Java

Exercise. Read up on some of these



Inter-Process Communication
Application Level

These kinds of framework tend to be very complicated as they
need to support a wide variety of communications between a
wide variety of components

For example, passing a picture from a program written in C to
one written in Java

Exercise. Read up on some of these



Inter-Process Communication

So there are many IPC mechanisms: they are not mutually
exclusive

Any of these mechanisms can be used in tandem

• Our program might employ D-Bus to pass data from one
application to another (e.g., cut and paste)

• D-Bus might use pipes to communicate between
processes

• And pass a filename between them
• and the data is communicated in the file



Inter-Process Communication

So there are many IPC mechanisms: they are not mutually
exclusive

Any of these mechanisms can be used in tandem

• Our program might employ D-Bus to pass data from one
application to another (e.g., cut and paste)

• D-Bus might use pipes to communicate between
processes

• And pass a filename between them
• and the data is communicated in the file



Inter-Process Communication

So there are many IPC mechanisms: they are not mutually
exclusive

Any of these mechanisms can be used in tandem

• Our program might employ D-Bus to pass data from one
application to another (e.g., cut and paste)

• D-Bus might use pipes to communicate between
processes

• And pass a filename between them
• and the data is communicated in the file



Inter-Process Communication

So there are many IPC mechanisms: they are not mutually
exclusive

Any of these mechanisms can be used in tandem

• Our program might employ D-Bus to pass data from one
application to another (e.g., cut and paste)

• D-Bus might use pipes to communicate between
processes

• And pass a filename between them
• and the data is communicated in the file



Inter-Process Communication

So there are many IPC mechanisms: they are not mutually
exclusive

Any of these mechanisms can be used in tandem

• Our program might employ D-Bus to pass data from one
application to another (e.g., cut and paste)

• D-Bus might use pipes to communicate between
processes

• And pass a filename between them

• and the data is communicated in the file



Inter-Process Communication

So there are many IPC mechanisms: they are not mutually
exclusive

Any of these mechanisms can be used in tandem

• Our program might employ D-Bus to pass data from one
application to another (e.g., cut and paste)

• D-Bus might use pipes to communicate between
processes

• And pass a filename between them
• and the data is communicated in the file



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?

• The amount of data to be communicated: just a bit or a
huge datafile?

• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?

• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?

• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use

• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use
• and so on


