
Memory
Language Support for Dynamic Allocation

These days dynamic allocation is common in languages

• Implicit memory management, e.g., Java. Where the
language controls the creation and deletion of objects
bigobject x; // memory is allocated for x

x = foo(); // that memory is now inaccessible

• Explicit memory management, e.g., C. Where the
programmer controls the creation and deletion of objects
(malloc and free)

And several other approaches!
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So we need to to be dynamic: create and allocate a partition as
needed

A lot more complicated to implement, but this allows the
process (i.e., the job submission) to say how big a partition it
needs and the OS allocates just that
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When we want some space, we search the freelist

We don’t want to waste space, so after choosing a big enough
block we slice off the chunk we need and return the unused
part to the freelist

But there might be several blocks on the freelist that we could
use: which one to choose?

Strategies for choosing blocks include:

• Best Fit. Find the smallest available big enough hole. Slow
as we always have to search the entire freelist and results
in lots of small fragments that are effectively useless as
they are too small to be allocated
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• First Fit. Use the first available big enough hole. Initially
faster than Best Fit and tends to leave larger and more
useful fragments. But fragments tend to be created near
the front of the freelist, so we have to search further and
further each time

• Worst Fit. Find the biggest available big enough hole.
Strangely this works out better than you think. Slicing
chunks off bigger blocks tends to leave larger fragments
that are more likely to be useful. Marginally faster than
Best Fit as we have larger and therefore fewer blocks in the
freelist to search through
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• Next Fit. Continue looking from where we last allocated
and take the next available big enough hole. Fast, and
improves on First Fit by spreading small fragments across
memory

• And many others

There are plenty of other memory management systems (e.g.,
Buddy memory allocation; Slab allocation; etc.) targeting the
fragmentation problem

Allocation is still a problem in current machines where certain
kinds of hardware need large contiguous chunks of physical
memory, e.g., GPUs
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• when carved off a bigger block in the allocation
• when returned at process exit

The second generally gives us larger fragments, but both need
to be addressed
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If we can’t find a big enough free space, we can consider
compaction of memory using a technique called garbage
collection

The OS stops all running processes (i.e., stops scheduling
processes); shifts their code and data around to close up the
gaps; then lets the processes continue (i.e., starts scheduling
again)
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GC is not often used in general-purpose OSs

• it is a very expensive operation to move all these blocks
around

• this takes a lot of time away from running of processes
• the pause while things are moved is bad for interactive and

real-time behaviour
• the erratic nature of when GCs are needed leads to

unpredictable behaviour from the OS
• given the right kind of hardware support, better solutions

completely avoiding the need for GC are possible
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GC is successfully used in user languages, e.g., Lisp, Java

There are ways of implementing GC to avoid the stop-and-copy
(ephemeral GC), or mitigating the overhead (generational GC)
but even so it is not popular for OSs



Memory
Physical Memory

GC is successfully used in user languages, e.g., Lisp, Java

There are ways of implementing GC to avoid the stop-and-copy
(ephemeral GC), or mitigating the overhead (generational GC)
but even so it is not popular for OSs



Memory
Physical Memory

Notice that all these rely on relocatable processes, namely
ones that don’t refer to specific locations in memory

Note that the code in a process now can’t use an absolute
“jump to memory location 42”, but must use a relative “jump by
n bytes”

And similarly for referencing data in memory

Unless we know in advance where our process is going to be
placed in memory, we cannot have code that has fixed absolute
addresses in it

These issues develop when we move to virtual memory later,
but in general code should not assume it lives in a given place
in memory
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