
Memory
Virtual Memory

Where are these page tables?

In memory, of course: and a link to the table is kept in the
process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In memory, of course: and a link to the table is kept in the
process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In memory, of course: and a link to the table is kept in the
process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In memory, of course: and a link to the table is kept in the
process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read

• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In memory, of course: and a link to the table is kept in the
process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write

• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In memory, of course: and a link to the table is kept in the
process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In memory, of course: and a link to the table is kept in the
process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

So, to be practically useful, this is supported by a piece of
hardware called the translation lookaside buffer (TLB), part of
the memory management unit (MMU)

The TLB maintains its own copy of a few of the virtual-physical
mappings from the page table of the current process and can
translate very quickly between them



Memory
Virtual Memory

So, to be practically useful, this is supported by a piece of
hardware called the translation lookaside buffer (TLB), part of
the memory management unit (MMU)

The TLB maintains its own copy of a few of the virtual-physical
mappings from the page table of the current process and can
translate very quickly between them



Memory
Virtual Memory

To repeat that: the table in the TLB is a small subset of the
OS’s page table mappings of the current process

Only a small subset as TLB memory is very limited since it is
very expensive to make memory that runs fast enough to make
this mechanism useful: it contains perhaps just a few dozens of
the virtual to physical mappings

Note (again): the TLB contains copies of the page mappings,
not pages



Memory
Virtual Memory

To repeat that: the table in the TLB is a small subset of the
OS’s page table mappings of the current process

Only a small subset as TLB memory is very limited since it is
very expensive to make memory that runs fast enough to make
this mechanism useful: it contains perhaps just a few dozens of
the virtual to physical mappings

Note (again): the TLB contains copies of the page mappings,
not pages



Memory
Virtual Memory

To repeat that: the table in the TLB is a small subset of the
OS’s page table mappings of the current process

Only a small subset as TLB memory is very limited since it is
very expensive to make memory that runs fast enough to make
this mechanism useful: it contains perhaps just a few dozens of
the virtual to physical mappings

Note (again): the TLB contains copies of the page mappings,
not pages



Memory
Virtual Memory

The Intel Nehalem architecture has a 64 entry data TLB (and a
512 entry level 2 TLB); and a separate 64 entry instruction TLB

Note that 64 entries typically corresponds to an area of
64 × 4k page = 256k bytes, so while not huge, this isn’t so bad
as it might seem as first



Memory
Virtual Memory

The Intel Nehalem architecture has a 64 entry data TLB (and a
512 entry level 2 TLB); and a separate 64 entry instruction TLB

Note that 64 entries typically corresponds to an area of
64 × 4k page = 256k bytes, so while not huge, this isn’t so bad
as it might seem as first



Memory
Virtual Memory

p
ro

cess

page
table

page
table

p
ro

cess

CPU
address

interrupt

memory bus

address

TLB

MMU

m
em

o
ry

virtual physical

The MMU and TLB are often physically part of the CPU
package, for speed of access



Memory
Virtual Memory

When presented with an address from the CPU the TLB first
looks the virtual page up in its table. If it is there is—a TLB
hit—the memory access goes ahead at full speed using the
physical address computed from the real page index found
there

If there is a TLB miss then it has to work a bit harder

There are two popular techniques used



Memory
Virtual Memory

When presented with an address from the CPU the TLB first
looks the virtual page up in its table. If it is there is—a TLB
hit—the memory access goes ahead at full speed using the
physical address computed from the real page index found
there

If there is a TLB miss then it has to work a bit harder

There are two popular techniques used



Memory
Virtual Memory

When presented with an address from the CPU the TLB first
looks the virtual page up in its table. If it is there is—a TLB
hit—the memory access goes ahead at full speed using the
physical address computed from the real page index found
there

If there is a TLB miss then it has to work a bit harder

There are two popular techniques used



Memory
Virtual Memory

In a hardware managed TLB, the CPU/TLB itself stops what it
is doing and searches for the page number in the page table (in
memory) for the current process: this is called a page walk

If it finds it, it installs it in the TLB table and carries on with the
memory access

The OS is not involved in the page walk, it is purely hardware



Memory
Virtual Memory

In a hardware managed TLB, the CPU/TLB itself stops what it
is doing and searches for the page number in the page table (in
memory) for the current process: this is called a page walk

If it finds it, it installs it in the TLB table and carries on with the
memory access

The OS is not involved in the page walk, it is purely hardware



Memory
Virtual Memory

In a hardware managed TLB, the CPU/TLB itself stops what it
is doing and searches for the page number in the page table (in
memory) for the current process: this is called a page walk

If it finds it, it installs it in the TLB table and carries on with the
memory access

The OS is not involved in the page walk, it is purely hardware



Memory
Virtual Memory

The second technique, a software managed TLB, simply raises
a TLB miss interrupt on a TLB miss

The OS then has to do the page walk



Memory
Virtual Memory

The second technique, a software managed TLB, simply raises
a TLB miss interrupt on a TLB miss

The OS then has to do the page walk



Memory
Virtual Memory

This deals with the case of when the requested page has
already been allocated by the OS to the current process, so
there is an entry in the page table for the page walk to find

In either software or hardware case, if the requested virtual
page is not yet allocated by the OS to the process and so not in
its page table, the OS needs to allocate a page



Memory
Virtual Memory

This deals with the case of when the requested page has
already been allocated by the OS to the current process, so
there is an entry in the page table for the page walk to find

In either software or hardware case, if the requested virtual
page is not yet allocated by the OS to the process and so not in
its page table, the OS needs to allocate a page



Memory
Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed



Memory
Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed



Memory
Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed



Memory
Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed



Memory
Virtual Memory

Of course, the OS may choose not to allocate a page and it
would likely then send a segmentation violation signal to the
process

x86 and ARM processors have hardware managed TLBs

SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault



Memory
Virtual Memory

Of course, the OS may choose not to allocate a page and it
would likely then send a segmentation violation signal to the
process

x86 and ARM processors have hardware managed TLBs

SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault



Memory
Virtual Memory

Of course, the OS may choose not to allocate a page and it
would likely then send a segmentation violation signal to the
process

x86 and ARM processors have hardware managed TLBs

SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault



Memory
Virtual Memory

Of course, the OS may choose not to allocate a page and it
would likely then send a segmentation violation signal to the
process

x86 and ARM processors have hardware managed TLBs

SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault



Memory
Virtual Memory

Speed relies crucially on the TLB containing a good proportion
of the addresses currently being used: if a process writes wildly
all over memory we are guaranteed to get TLB misses and slow
memory access: lots of TLB misses and page walks or page
fault interrupts

Fortunately, most well-written programs behave sensibly and
tend to use the same addresses over and over, meaning lots of
TLB hits

After a while, the TLB settles down, caching the indices of the
pages the process is using, the working set



Memory
Virtual Memory

Speed relies crucially on the TLB containing a good proportion
of the addresses currently being used: if a process writes wildly
all over memory we are guaranteed to get TLB misses and slow
memory access: lots of TLB misses and page walks or page
fault interrupts

Fortunately, most well-written programs behave sensibly and
tend to use the same addresses over and over, meaning lots of
TLB hits

After a while, the TLB settles down, caching the indices of the
pages the process is using, the working set



Memory
Virtual Memory

Speed relies crucially on the TLB containing a good proportion
of the addresses currently being used: if a process writes wildly
all over memory we are guaranteed to get TLB misses and slow
memory access: lots of TLB misses and page walks or page
fault interrupts

Fortunately, most well-written programs behave sensibly and
tend to use the same addresses over and over, meaning lots of
TLB hits

After a while, the TLB settles down, caching the indices of the
pages the process is using, the working set



Memory
Virtual Memory

Note that a page fault can cost a lot of time

Register access 1 cycle
(L1 memory cache hit ≈ 2 cycles)
(L3 memory cache hit ≈ 50 cycles)
Main memory access ≈ 200 cycles
TLB miss (page in memory) ≈ 10,000 cycles
Page fault (page on disk) ≈ 1,000,000,000 cycles

These are very rough figures and are the combined overhead
of OS operations and memory architecture


