
Memory
Virtual Memory

OSs often use lazy page allocation: don’t allocate anything
until the process actually accesses a page, so physical memory
is only actually allocated on a page fault when we know we
really need it

If process requests 10GB and only uses 1GB, this is not a
problem: only 1Gb will be mapped in the page table

And the process’s virtual size can easily be bigger than the
physical memory size, either through unmapped or swapped
pages



Memory
Virtual Memory

OSs often use lazy page allocation: don’t allocate anything
until the process actually accesses a page, so physical memory
is only actually allocated on a page fault when we know we
really need it

If process requests 10GB and only uses 1GB, this is not a
problem: only 1Gb will be mapped in the page table

And the process’s virtual size can easily be bigger than the
physical memory size, either through unmapped or swapped
pages



Memory
Virtual Memory

OSs often use lazy page allocation: don’t allocate anything
until the process actually accesses a page, so physical memory
is only actually allocated on a page fault when we know we
really need it

If process requests 10GB and only uses 1GB, this is not a
problem: only 1Gb will be mapped in the page table

And the process’s virtual size can easily be bigger than the
physical memory size, either through unmapped or swapped
pages



Memory
Virtual Memory

The cost is kept low though the use of the TLB, but remember a
page fault is relatively expensive

And swapping is orders of magnitude slower still: we want to
avoid swapping if at all possible

This is something in the hands of the programmer: don’t use
memory stupidly!



Memory
Virtual Memory

The cost is kept low though the use of the TLB, but remember a
page fault is relatively expensive

And swapping is orders of magnitude slower still: we want to
avoid swapping if at all possible

This is something in the hands of the programmer: don’t use
memory stupidly!



Memory
Virtual Memory

The cost is kept low though the use of the TLB, but remember a
page fault is relatively expensive

And swapping is orders of magnitude slower still: we want to
avoid swapping if at all possible

This is something in the hands of the programmer: don’t use
memory stupidly!



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

TLBs are good but have limitations:

• they are quite small capacity, but usually big enough to be
highly effective

• they rely on temporal locality to be effective: again OK for
all but weird programs

Perhaps the biggest problem is whenever the OS does a
context switch, i.e., chooses to schedule to run a different
process. The TLB must be flushed as the incoming process will
have a different set of virtual-physical mappings

The TLB will then be re-populated by a bunch of TLB misses
and page faults as the incoming process runs



Memory
Virtual Memory

TLBs are good but have limitations:

• they are quite small capacity, but usually big enough to be
highly effective

• they rely on temporal locality to be effective: again OK for
all but weird programs

Perhaps the biggest problem is whenever the OS does a
context switch, i.e., chooses to schedule to run a different
process. The TLB must be flushed as the incoming process will
have a different set of virtual-physical mappings

The TLB will then be re-populated by a bunch of TLB misses
and page faults as the incoming process runs



Memory
Virtual Memory

TLBs are good but have limitations:

• they are quite small capacity, but usually big enough to be
highly effective

• they rely on temporal locality to be effective: again OK for
all but weird programs

Perhaps the biggest problem is whenever the OS does a
context switch, i.e., chooses to schedule to run a different
process. The TLB must be flushed as the incoming process will
have a different set of virtual-physical mappings

The TLB will then be re-populated by a bunch of TLB misses
and page faults as the incoming process runs



Memory
Virtual Memory

TLBs are good but have limitations:

• they are quite small capacity, but usually big enough to be
highly effective

• they rely on temporal locality to be effective: again OK for
all but weird programs

Perhaps the biggest problem is whenever the OS does a
context switch, i.e., chooses to schedule to run a different
process. The TLB must be flushed as the incoming process will
have a different set of virtual-physical mappings

The TLB will then be re-populated by a bunch of TLB misses
and page faults as the incoming process runs



Memory
Virtual Memory

TLBs are good but have limitations:

• they are quite small capacity, but usually big enough to be
highly effective

• they rely on temporal locality to be effective: again OK for
all but weird programs

Perhaps the biggest problem is whenever the OS does a
context switch, i.e., chooses to schedule to run a different
process. The TLB must be flushed as the incoming process will
have a different set of virtual-physical mappings

The TLB will then be re-populated by a bunch of TLB misses
and page faults as the incoming process runs



Memory
Virtual Memory

This is a major reason why a context switch is so expensive: on
top of the cost for the save/restore of process state there is a
large overhead for the subsequent TLB misses

Exercise. Read about the Spectre and Meltdown hardware
bugs

Exercise. Think about the difference between vectors and
linked lists in terms of virtual memory and TLBs

Exercise to think about: the page tables in memory can grow so
large they need to be swapped themselves. . .



Memory
Virtual Memory

This is a major reason why a context switch is so expensive: on
top of the cost for the save/restore of process state there is a
large overhead for the subsequent TLB misses

Exercise. Read about the Spectre and Meltdown hardware
bugs

Exercise. Think about the difference between vectors and
linked lists in terms of virtual memory and TLBs

Exercise to think about: the page tables in memory can grow so
large they need to be swapped themselves. . .



Memory
Virtual Memory

This is a major reason why a context switch is so expensive: on
top of the cost for the save/restore of process state there is a
large overhead for the subsequent TLB misses

Exercise. Read about the Spectre and Meltdown hardware
bugs

Exercise. Think about the difference between vectors and
linked lists in terms of virtual memory and TLBs

Exercise to think about: the page tables in memory can grow so
large they need to be swapped themselves. . .



Memory
Virtual Memory

This is a major reason why a context switch is so expensive: on
top of the cost for the save/restore of process state there is a
large overhead for the subsequent TLB misses

Exercise. Read about the Spectre and Meltdown hardware
bugs

Exercise. Think about the difference between vectors and
linked lists in terms of virtual memory and TLBs

Exercise to think about: the page tables in memory can grow so
large they need to be swapped themselves. . .



Memory
Virtual Memory

Examples. A “Hello world” program in C, Java, Python and Perl

C Java Python Perl

Resident size KB 430 16500 4300 1850
Minor Fault 150 3800 1200 530
Major Fault 0 0 0 0
Context switch 2 150 8 4

In Linux 3.11.10; 8GB memory

Numbers are approximate and vary on runs due to scheduling


