
Filesystems
Inodes

The data on the disk is in disk blocks, fixed size areas on the
disk, e.g., 512 or 1024 bytes

Having a fixed size allows for easy and fast allocation and
deallocation

This is similar to pages in memory; but now physical location of
blocks is important as discs are mechanical devices

Whole numbers of blocks are always allocated to files

This can lead to wastage, e.g., a 1025 byte file might need two
blocks, but uses just over half of the space. Though there are
lot of tricks in real filesystems to avoid the worst of this



Filesystems
Inodes

The data on the disk is in disk blocks, fixed size areas on the
disk, e.g., 512 or 1024 bytes

Having a fixed size allows for easy and fast allocation and
deallocation

This is similar to pages in memory; but now physical location of
blocks is important as discs are mechanical devices

Whole numbers of blocks are always allocated to files

This can lead to wastage, e.g., a 1025 byte file might need two
blocks, but uses just over half of the space. Though there are
lot of tricks in real filesystems to avoid the worst of this



Filesystems
Inodes

The data on the disk is in disk blocks, fixed size areas on the
disk, e.g., 512 or 1024 bytes

Having a fixed size allows for easy and fast allocation and
deallocation

This is similar to pages in memory; but now physical location of
blocks is important as discs are mechanical devices

Whole numbers of blocks are always allocated to files

This can lead to wastage, e.g., a 1025 byte file might need two
blocks, but uses just over half of the space. Though there are
lot of tricks in real filesystems to avoid the worst of this



Filesystems
Inodes

The data on the disk is in disk blocks, fixed size areas on the
disk, e.g., 512 or 1024 bytes

Having a fixed size allows for easy and fast allocation and
deallocation

This is similar to pages in memory; but now physical location of
blocks is important as discs are mechanical devices

Whole numbers of blocks are always allocated to files

This can lead to wastage, e.g., a 1025 byte file might need two
blocks, but uses just over half of the space. Though there are
lot of tricks in real filesystems to avoid the worst of this



Filesystems
Inodes

The data on the disk is in disk blocks, fixed size areas on the
disk, e.g., 512 or 1024 bytes

Having a fixed size allows for easy and fast allocation and
deallocation

This is similar to pages in memory; but now physical location of
blocks is important as discs are mechanical devices

Whole numbers of blocks are always allocated to files

This can lead to wastage, e.g., a 1025 byte file might need two
blocks, but uses just over half of the space. Though there are
lot of tricks in real filesystems to avoid the worst of this



Filesystems
Inodes

prog.c: 42

Info

directory

inode
42

disk
blocks

indirect
direct

An inode is of fixed size and has space for, say, 10 block
pointers



Filesystems
Inodes

prog.c: 42

Info

directory

inode
42

disk
blocks

indirect
direct

But then you can’t have files bigger than 10 × 1024 = 10KB



Filesystems
Inodes

prog.c: 42

Info

directory

inode
42

direct
disk
blocks

blocks
disk
indirect indirect

So for such files we have an indirect block, that contains a
pointer to an array of 256, say, block pointers



Filesystems
Inodes

prog.c: 42

Info

directory

inode
42

direct
disk
blocks

blocks
disk
indirect indirect

This gives us 256 more blocks, which is 256KB more space



Filesystems
Inodes

prog.c: 42

Info

directory

inode
42

direct
disk
blocks

blocks
disk
indirect

double
indirect
disk
blocks

Bigger files have a double indirect block



Filesystems
Inodes

prog.c: 42

Info

directory

inode
42

direct
disk
blocks

blocks
disk
indirect

double
indirect
disk
blocks

This gives us 256 × 256 = 65536 more blocks, 65MB more
space



Filesystems
Inodes

prog.c: 42

Info

directory

inode
42

direct
disk
blocks

blocks
disk
indirect

double
indirect
disk
blocks

triple indirect

Extreme files need a triple indirect block



Filesystems
Inodes

prog.c: 42

Info

directory

inode
42

direct
disk
blocks

blocks
disk
indirect

double
indirect
disk
blocks

triple indirect

This takes us to 16 million blocks, 16GB more space



Filesystems
Inodes

Now every indirect block is overhead occupying space on the
disk that could otherwise be storing data

But this is not so wasteful as you might think as most files are
quite small; the overhead for large files is relatively small, too



Filesystems
Inodes

Now every indirect block is overhead occupying space on the
disk that could otherwise be storing data

But this is not so wasteful as you might think as most files are
quite small; the overhead for large files is relatively small, too



Filesystems
Inodes

Caching the inode and the indirect blocks in memory helps
reduce the lookup overhead

The space for the pointers is used for various other things when
the inode refers to something other than a disk file



Filesystems
Inodes

Caching the inode and the indirect blocks in memory helps
reduce the lookup overhead

The space for the pointers is used for various other things when
the inode refers to something other than a disk file



Filesystems
Inodes

For example, a soft link (similar to a Windows shortcut) to a file
or directory

This is a special inode whose purpose is to say “don’t look at
me, look at this file instead”

If you had a soft link named foo that linked to bar its content
would be just the name “bar”

But the action of the OS when a program opens foo is not to
present the data “bar”, but to close inode foo and open inode
named by bar instead

In effect, this is another way for files to have multiple names, but
it is very different from normal multiple names, called hard links



Filesystems
Inodes

For example, a soft link (similar to a Windows shortcut) to a file
or directory

This is a special inode whose purpose is to say “don’t look at
me, look at this file instead”

If you had a soft link named foo that linked to bar its content
would be just the name “bar”

But the action of the OS when a program opens foo is not to
present the data “bar”, but to close inode foo and open inode
named by bar instead

In effect, this is another way for files to have multiple names, but
it is very different from normal multiple names, called hard links



Filesystems
Inodes

For example, a soft link (similar to a Windows shortcut) to a file
or directory

This is a special inode whose purpose is to say “don’t look at
me, look at this file instead”

If you had a soft link named foo that linked to bar its content
would be just the name “bar”

But the action of the OS when a program opens foo is not to
present the data “bar”, but to close inode foo and open inode
named by bar instead

In effect, this is another way for files to have multiple names, but
it is very different from normal multiple names, called hard links



Filesystems
Inodes

For example, a soft link (similar to a Windows shortcut) to a file
or directory

This is a special inode whose purpose is to say “don’t look at
me, look at this file instead”

If you had a soft link named foo that linked to bar its content
would be just the name “bar”

But the action of the OS when a program opens foo is not to
present the data “bar”, but to close inode foo and open inode
named by bar instead

In effect, this is another way for files to have multiple names, but
it is very different from normal multiple names, called hard links



Filesystems
Inodes

For example, a soft link (similar to a Windows shortcut) to a file
or directory

This is a special inode whose purpose is to say “don’t look at
me, look at this file instead”

If you had a soft link named foo that linked to bar its content
would be just the name “bar”

But the action of the OS when a program opens foo is not to
present the data “bar”, but to close inode foo and open inode
named by bar instead

In effect, this is another way for files to have multiple names, but
it is very different from normal multiple names, called hard links



Filesystems
Inodes

A hard link is the normal reference to (the inode of) a file; a soft
link is (a reference to an inode containing) a signpost saying
“look over there”

The soft link might point to a place where there is no file; a hard
link is the file

And, as there are no inode references involved in a soft link, it
can be the name of any file on any filesystem in the machine

Note: a hard link refers to the file, while a soft link refers to a
name of the file. So a hard link is a name, while a soft link is a
name of a name



Filesystems
Inodes

A hard link is the normal reference to (the inode of) a file; a soft
link is (a reference to an inode containing) a signpost saying
“look over there”

The soft link might point to a place where there is no file; a hard
link is the file

And, as there are no inode references involved in a soft link, it
can be the name of any file on any filesystem in the machine

Note: a hard link refers to the file, while a soft link refers to a
name of the file. So a hard link is a name, while a soft link is a
name of a name



Filesystems
Inodes

A hard link is the normal reference to (the inode of) a file; a soft
link is (a reference to an inode containing) a signpost saying
“look over there”

The soft link might point to a place where there is no file; a hard
link is the file

And, as there are no inode references involved in a soft link, it
can be the name of any file on any filesystem in the machine

Note: a hard link refers to the file, while a soft link refers to a
name of the file. So a hard link is a name, while a soft link is a
name of a name



Filesystems
Inodes

A hard link is the normal reference to (the inode of) a file; a soft
link is (a reference to an inode containing) a signpost saying
“look over there”

The soft link might point to a place where there is no file; a hard
link is the file

And, as there are no inode references involved in a soft link, it
can be the name of any file on any filesystem in the machine

Note: a hard link refers to the file, while a soft link refers to a
name of the file. So a hard link is a name, while a soft link is a
name of a name



Filesystems
Inodes

bar:42 baz:42foo:23

directories

inodes

file blocks

23 42

link

bar



Filesystems
Inodes

Use ls -li to see the link details and inode number of a file
under Unix

% ln -s somefile link1

% ls -li link1

3154340 lrwxrwxrwx 2 rjb users 6 2010-04-22 10:38 lin

k1 -> somefile

% ln link1 link2

% ls -li link*

3154340 lrwxrwxrwx 2 rjb users 6 2010-04-22 10:38 lin

k1 -> somefile

3154340 lrwxrwxrwx 2 rjb users 6 2010-04-22 10:38 lin

k2 -> somefile


