
Conclusion of OS

Operating systems are still very much a current topic

We have only scratched the surface — there are many other
things a real OS would have to implement

There are still lots of hard problems to solve, such as
scheduling

And, as hardware changes, OSs must change, too

OSs for low-power devices (in particular mobile phones) are a
huge source of research



Conclusion of OS

Operating systems are still very much a current topic

We have only scratched the surface — there are many other
things a real OS would have to implement

There are still lots of hard problems to solve, such as
scheduling

And, as hardware changes, OSs must change, too

OSs for low-power devices (in particular mobile phones) are a
huge source of research



Conclusion of OS

Operating systems are still very much a current topic

We have only scratched the surface — there are many other
things a real OS would have to implement

There are still lots of hard problems to solve, such as
scheduling

And, as hardware changes, OSs must change, too

OSs for low-power devices (in particular mobile phones) are a
huge source of research



Conclusion of OS

Operating systems are still very much a current topic

We have only scratched the surface — there are many other
things a real OS would have to implement

There are still lots of hard problems to solve, such as
scheduling

And, as hardware changes, OSs must change, too

OSs for low-power devices (in particular mobile phones) are a
huge source of research



Conclusion of OS

Operating systems are still very much a current topic

We have only scratched the surface — there are many other
things a real OS would have to implement

There are still lots of hard problems to solve, such as
scheduling

And, as hardware changes, OSs must change, too

OSs for low-power devices (in particular mobile phones) are a
huge source of research



Conclusion of OS

At the other end of the scale, people are still developing OSs on
large machines

OS virtualisation is important in the era of cloud computing

Where several users (customers) are sharing the same
hardware, but each has their own, private OS running their
own, private applications

Originally, OSs were the software closest to the hardware: with
OS virtualisation, this is no longer necessarily true



Conclusion of OS

At the other end of the scale, people are still developing OSs on
large machines

OS virtualisation is important in the era of cloud computing

Where several users (customers) are sharing the same
hardware, but each has their own, private OS running their
own, private applications

Originally, OSs were the software closest to the hardware: with
OS virtualisation, this is no longer necessarily true



Conclusion of OS

At the other end of the scale, people are still developing OSs on
large machines

OS virtualisation is important in the era of cloud computing

Where several users (customers) are sharing the same
hardware, but each has their own, private OS running their
own, private applications

Originally, OSs were the software closest to the hardware: with
OS virtualisation, this is no longer necessarily true



Conclusion of OS

At the other end of the scale, people are still developing OSs on
large machines

OS virtualisation is important in the era of cloud computing

Where several users (customers) are sharing the same
hardware, but each has their own, private OS running their
own, private applications

Originally, OSs were the software closest to the hardware: with
OS virtualisation, this is no longer necessarily true



Conclusion of OS

Hardware

OS

System libs

Applications

Traditional OS



Conclusion of OS

Sometimes an application only runs on a specific OS

But repeatedly rebooting a machine with a different OS every
time a user wants to run a different application is not a good
approach

So the solution is to have multiple, simultaneous OSs on a
single machine



Conclusion of OS

Sometimes an application only runs on a specific OS

But repeatedly rebooting a machine with a different OS every
time a user wants to run a different application is not a good
approach

So the solution is to have multiple, simultaneous OSs on a
single machine



Conclusion of OS

Sometimes an application only runs on a specific OS

But repeatedly rebooting a machine with a different OS every
time a user wants to run a different application is not a good
approach

So the solution is to have multiple, simultaneous OSs on a
single machine



Conclusion of OS

Hardware

Hypervisor (ring −1)

OS (ring 0) OS (ring 0)

Applications Applications

System libsSystem libs

Virtualised OSs

Hypervisors appeared in IBM mainframes in the late 1960s



Conclusion of OS

Hardware

Hypervisor (ring −1)

OS (ring 0) OS (ring 0)

Applications Applications

System libsSystem libs

Virtualised OSs

Hypervisors appeared in IBM mainframes in the late 1960s



Conclusion of OS

There are several ways OS virtualisation is done



Conclusion of OS

hardware

hypervisor

OS

libs

Application Application

systemsystem
libs

OS

Bare metal virtualisation has a thin layer, the hypervisor, to
manage the hardware, allowing each OS to see separate
“virtual hardware” which they manage



Conclusion of OS

The OSs can be completely different, e.g., Windows and Linux,
and each believe they have the whole machine

Modern X86 architectures provide a Ring -1 to support this

Examples: Xen, Hyper-V

Good for sharing the computer amongst users who have
requirements for different OSs



Conclusion of OS

The OSs can be completely different, e.g., Windows and Linux,
and each believe they have the whole machine

Modern X86 architectures provide a Ring -1 to support this

Examples: Xen, Hyper-V

Good for sharing the computer amongst users who have
requirements for different OSs



Conclusion of OS

The OSs can be completely different, e.g., Windows and Linux,
and each believe they have the whole machine

Modern X86 architectures provide a Ring -1 to support this

Examples: Xen, Hyper-V

Good for sharing the computer amongst users who have
requirements for different OSs



Conclusion of OS

The OSs can be completely different, e.g., Windows and Linux,
and each believe they have the whole machine

Modern X86 architectures provide a Ring -1 to support this

Examples: Xen, Hyper-V

Good for sharing the computer amongst users who have
requirements for different OSs



Conclusion of OS

Application

system
libs

libs

Application

system

Guest OS

libs

Application

system

Guest OS

virtualisation

hardware

Host OS

Hosted virtualisation has a normal host OS that runs
virtualisation code. One or more guest OSs run on top of that

Examples: VMWare, VirtualBox, Parallels

Good for when you need sophisticated management of the
guest OSs by the host OS, for example in Cloud provision



Conclusion of OS

Application

system
libs

libs

Application

system

Guest OS

libs

Application

system

Guest OS

virtualisation

hardware

Host OS

Hosted virtualisation has a normal host OS that runs
virtualisation code. One or more guest OSs run on top of that

Examples: VMWare, VirtualBox, Parallels

Good for when you need sophisticated management of the
guest OSs by the host OS, for example in Cloud provision



Conclusion of OS

Application

system
libs

libs

Application

system

Guest OS

libs

Application

system

Guest OS

virtualisation

hardware

Host OS

Hosted virtualisation has a normal host OS that runs
virtualisation code. One or more guest OSs run on top of that

Examples: VMWare, VirtualBox, Parallels

Good for when you need sophisticated management of the
guest OSs by the host OS, for example in Cloud provision



Conclusion of OS

Application

system
libs

Application

system
libs

Application

system
libs

hardware

OS

Not quite OS virtualisation, but with the same target
applications is containers. The applications share the same
OS, but the OS is rigidly partitioned so each container cannot
see or influence what is happening in other containers (e.g.,
CPU limits)



Conclusion of OS

With containers, the applications must run on the same OS
kernel, but can have different systems libraries and other
software (e.g., RedHat in one and Ubuntu in another)

We might think of this as a kind of multiple user modes

Examples: Solaris containers, Docker

Good for application delivery, where an application needs a lot
of specific system library support: so we deliver the systems
libraries with the application!



Conclusion of OS

With containers, the applications must run on the same OS
kernel, but can have different systems libraries and other
software (e.g., RedHat in one and Ubuntu in another)

We might think of this as a kind of multiple user modes

Examples: Solaris containers, Docker

Good for application delivery, where an application needs a lot
of specific system library support: so we deliver the systems
libraries with the application!



Conclusion of OS

With containers, the applications must run on the same OS
kernel, but can have different systems libraries and other
software (e.g., RedHat in one and Ubuntu in another)

We might think of this as a kind of multiple user modes

Examples: Solaris containers, Docker

Good for application delivery, where an application needs a lot
of specific system library support: so we deliver the systems
libraries with the application!



Conclusion of OS

With containers, the applications must run on the same OS
kernel, but can have different systems libraries and other
software (e.g., RedHat in one and Ubuntu in another)

We might think of this as a kind of multiple user modes

Examples: Solaris containers, Docker

Good for application delivery, where an application needs a lot
of specific system library support: so we deliver the systems
libraries with the application!



Conclusion of OS

Application

system
libs

libs

Application

system

OS

hardware

OS

hw emulator

And then there are variants that do hardware virtualisation by
emulating different kinds of hardware, e.g., we might have our
OS running on an ARM emulation running on X86 hardware

Or on an X86 emulation on ARM hardware



Conclusion of OS

Application

system
libs

libs

Application

system

OS

hardware

OS

hw emulator

And then there are variants that do hardware virtualisation by
emulating different kinds of hardware, e.g., we might have our
OS running on an ARM emulation running on X86 hardware

Or on an X86 emulation on ARM hardware



Conclusion of OS

These emulations are a lot slower than the native hardware, but
provide a flexibility to the customer

Examples: Qemu (emulates several kinds of hardware), Bochs
(emulates X86)

Exercise. Compare with Apple’s new Rosetta software that
allows Intel code to run on Arm hardware (only user code,
though)



Conclusion of OS

These emulations are a lot slower than the native hardware, but
provide a flexibility to the customer

Examples: Qemu (emulates several kinds of hardware), Bochs
(emulates X86)

Exercise. Compare with Apple’s new Rosetta software that
allows Intel code to run on Arm hardware (only user code,
though)



Conclusion of OS

These emulations are a lot slower than the native hardware, but
provide a flexibility to the customer

Examples: Qemu (emulates several kinds of hardware), Bochs
(emulates X86)

Exercise. Compare with Apple’s new Rosetta software that
allows Intel code to run on Arm hardware (only user code,
though)



Conclusion of OS

Exercise. Read up on Cloud Services, Software as a Service
(SaaS), Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), Software Appliances



Conclusion of OS

All of these techniques are applied in cloud computing, where
users buy time on a large, remote machine

Welcome to the 1960s!



Conclusion of OS

All of these techniques are applied in cloud computing, where
users buy time on a large, remote machine

Welcome to the 1960s!



Conclusion of OS

Exercise. On Mars, the autonomous helicopter drone Ingenuity
(brought by the lander Perseverance) runs Linux on a 500Hz
(not MHz!) processor. Read about this

Exercise. Play with an OS you are not familiar with (Mac, Win
or Lin or other) and learn the ways it does things. Write,
compile and run a program

Exercise. Read about the advances in persistent memory:
comparable in speed to main memory, but retains data when
power cycled like disk (non-volatile). What changes would we
need from an OS to deal with such a technology?


