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At the other end of the scale, people are still developing OSs on
large machines

OS virtualisation is important in the era of cloud computing

Where several users (customers) are sharing the same
hardware, but each has their own, private OS running their
own, private applications

Originally, OSs were the software closest to the hardware: with
OS virtualisation, this is no longer necessarily true
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approach
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Bare metal virtualisation has a thin layer, the hypervisor, to
manage the hardware, allowing each OS to see separate
“virtual hardware” which they manage
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guest OSs by the host OS, for example in Cloud provision
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Not quite OS virtualisation, but with the same target
applications is containers. The applications share the same
OS, but the OS is rigidly partitioned so each container cannot
see or influence what is happening in other containers (e.g.,
CPU limits)
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Examples: Solaris containers, Docker

Good for application delivery, where an application needs a lot
of specific system library support: so we deliver the systems
libraries with the application!
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(emulates X86)

Exercise. Compare with Apple’s new Rosetta software that
allows Intel code to run on Arm hardware (only user code,
though)
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Exercise. Read up on Cloud Services, Software as a Service
(SaaS), Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), Software Appliances
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Exercise. On Mars, the autonomous helicopter drone Ingenuity
(brought by the lander Perseverance) runs Linux on a 500Hz
(not MHz!) processor. Read about this

Exercise. Play with an OS you are not familiar with (Mac, Win
or Lin or other) and learn the ways it does things. Write,
compile and run a program

Exercise. Read about the advances in persistent memory:
comparable in speed to main memory, but retains data when
power cycled like disk (non-volatile). What changes would we
need from an OS to deal with such a technology?


