Computer systems architectures
CM12002
Russell Bradford
2023/24
1. Introduction to OS
An Operating System (OS) is just a program, often called the kernel or monitor
Its purpose is to
· Manage the resources of the computer
· Provide the applications programmer (N.B., not the end user of applications) with a usable programming interface to access those resources
The interface (graphical or otherwise) that the end user interacts with is not part of the OS
That’s just another program that uses the OS
If the end-user sees it, it’s not part of this unit!
2. Resources
So what are resources?
· Hardware: cpu, memory, disk, network, sound, video, keyboard, mouse, printer, camera, …
· Software: anything that controls the above, though use of the cpu (running applications) is a primary focus
3. Resources
Why do they need managing?
1. They are limited with not enough to go round
1. They need protection
1. They need to meet certain criteria
4. Resources
Limited?
Surely computers are so big and fast these days there is no scarcity on resources?
Actually, most computers are small and very limited!
E.g., mobile phones have strict limitations on memory, cpu power and energy consumption
Even big supercomputers are not yet big enough for many people
My laptop is currently running about 370 programs
5. Resources
Protection
Protection comes in many forms
· Preventing one program from accidentally (or intentionally) corrupting another program or its data: security
· Ensuring certain resources are only available to those programs that are allowed: authorisation
· Protecting you from your own stupid mistakes (Did you really want to delete that?)
6. Resources
Criteria
Popular criteria include
· Responsiveness: making a program respond snappily or processing network packets as they arrive
· Real Time: certain events must be dealt with in a (small) fixed amount of time, e.g., the controlling flaps on an airplane’s wing, video streaming
· Security: prevention of accidental or malicious access or modification
7. Programming Interface
Another purpose of an OS is to provide an interface for the programmer:
The programmer who has to write applications for the machine does not want to have to know the details of the hardware: think portability (c.f. von Neumann’s model)
· How do I prod this hardware to get it to do what I want?
· How do I get the best performance out of this disk, network, video?
· How should I deal with interrupts?
· And so on
8. Programming Interface
We don’t want to have to re-implement everything in every program
So the OS does this kind of thing for us
Early programmers, before OSs, had to do it all themselves, for every program they wrote
Much better to let someone else do the hard work (a common theme in Computer Science)
9. Programming Interface
Having an expert do this stuff once and provide a standard interface to it for us to use is much better for us
· We don’t have do it
· The expert is better at it and (presumably) understands the hardware well
· The expert is a better programmer than us and can get better performance out of the hardware
· The programmer knows more Computer Science than us and knows the many pitfalls and necessary tricks that OS programming involves
10. Programming Interface
They do it so we don’t have to
11. Programming Interface
Layer Abstraction:
(100,50) (0,0)(40,10)Hardware (45,5)(0,0)[l]PC, phone, PVR, SatNav (0,10)(40,10)OS (45,15)(0,0)[l]Linux, OS X, Windows, Android (5,20)(30,10)System libraries (45,25)(0,0)[l]Maths, graphics, sound (0,30)(20,10)(G)UI (45,35)(0,0)[l]Command line, windowing, touch (0,20)(0,1)20(0,40)(1,0)20 (20,40)(0,-1)10 (0,40)(40,10)Applications (0,40)(0,1)10 (0,50)(1,0)40 (40,50)(0,-1)30 (45,45)(0,0)[l]Browser, word processor, game
12. Important Point
Reemphasising a very important point:
The GUI is not part of the OS
The GUI is just another program that uses the OS
There was a time when certain OS vendors tried to tie the GUI into the OS (to gain speed and commercial advantage)
13. Programming Interface
Bad Layer Abstraction:
(100,50) (0,0)(40,10)Hardware (45,5)(0,0)[l]PC (0,10)(40,10)OS (0,10)(0,1)10 (35,20)(1,0)5 (40,10)(0,1)10 (45,15)(0,0)[l]Windows (5,20)(30,10)System libraries (45,25)(0,0)[l]Maths, graphics, sound (0,30)(20,10)GUI (45,35)(0,0)[l]Windows (0,20)(0,1)20(0,40)(1,0)20 (20,40)(0,-1)10 (0,40)(40,10)Applications (0,40)(0,1)10 (0,50)(1,0)40 (40,50)(0,-1)30 (45,45)(0,0)[l]Browser, word processor, game
14. Programming Interface
Very Bad Layer Abstraction:
(100,50) (0,0)(40,10)Hardware (45,5)(0,0)[l]PC (0,10)(40,10)OS (0,10)(0,1)10 (40,10)(0,1)10 (45,15)(0,0)[l]Windows (5,20)(30,10)System libraries (45,25)(0,0)[l]Maths, graphics, sound (0,30)(20,10)GUI (45,35)(0,0)[l]Windows (0,20)(0,1)20(0,40)(1,0)20 (20,40)(0,-1)10 (0,40)(40,10)Applications (0,40)(0,1)10 (0,50)(1,0)40 (40,50)(0,-1)30 (45,45)(0,0)[l]Browser, word processor, game
15. Programming Interface
This is poor design and should be avoided
It was a huge source of problems: bugs in the GUI or the application would cause the OS to crash, so a poorly written program could take out the whole machine
It was an easy way to circumvent the security the OS provides, thus allowing attackers to access the machine
An application, like a browser, could gain control of the hardware
Fortunately things have progressed since then
Mostly
16. Another Important Point
The GUI is just a program, so it quite possible to have similar-looking GUIs running on different OSs; and different-looking GUIs running on the same OS
But we must be careful as some people don’t realise the difference between an OS and everything else
17. Programming Interface
CS view:Marketer’s view:
(100,50) (0,0)(40,10)Hardware (0,10)(40,10)OS (45,15)(0,0)[l]OS (5,20)(30,10)System libraries (45,25)(0,0)[l]OS (0,30)(20,10)GUI (45,35)(0,0)[l]OS (0,20)(0,1)20(0,40)(1,0)20 (20,40)(0,-1)10 (0,40)(40,10)Applications (45,45)(0,0)[l]OS? (0,40)(0,1)10 (0,50)(1,0)40 (40,50)(0,-1)30
18. One more thing
There are a couple of vital aspects of an OS that are sometimes overlooked:
1. It should be efficient and lightweight: every CPU cycle that the OS uses is one that is taken away from the user’s programs
1. It should be flexible and not get in the way of the programmer
So a perfect OS would be completely invisible!
19. Background
Operating Systems have been around nearly as long as computers
… but not quite as long
So long, though, that some (most!) people don’t distinguish between computers and their OS
Computer Scientists ought to be more careful
So some people confuse the GUI with the OS; many confuse the GUI with the OS and the hardware!
20. Background
An OS is just a program so
· we can have different OSs on the same hardware
· we can have the same OS on different hardware
21. Background
· On Intel hardware (“PC”) you can run Windows, MacOS, Linux (and lots of others)
· Until recently Mac hardware was the same as PC hardware, so you can run all of the above on a Mac — the new Mac M1 is effectively only slightly different and still run Linux
· Linux runs on many kinds of hardware, including Intel, mainframes (IBM, Oracle/Sun), million processor clusters, phones (ARM), gadgets like satnavs, TVs and PVRs
N.B. when we say “Intel” or “x86” we mean Intel, AMD and all the compatible architectures
22. Background
The understanding of the general public is such that they get the hardware and software confused
And, more, they are usually thinking about the GUI, not the OS
Some software companies encourage and make capital out of this confusion
23. Background
There is some reason for this confusion: Microsoft and Apple tie their GUIs indivisibly to their OSs
Other OSs, notably Linux, allow the user a choice of many UIs and GUIs all running on the same OS kernel
But typical users base their choices on GUIs, not OSs
24. Background
As applications programmers, we should choose an OS for the features that it provides:
· Ease of use
· Efficiency
· Security
· Stability
· Suitability for the task in hand
· And so on
25. Background
Just a few recent operating systems:
· XP/Vista/Windows 7/Windows 8/Windows 10 from Microsoft. Large, resource intensive, highly featured, previously Intel processor only, now Intel and ARM
· OS X from Apple. Large, not quite so intensive, highly featured. Based on BSD (Unix), on Intel and ARM processors (Earlier: PowerPC)
· Unixes. Solaris from Sun/Oracle, IRIX from SGI, AIX from IBM, OSF/1 from DEC, etc. Large to medium.
· Unix derivatives (reimplementations). Various BSD (including MacOS X), Linux, Hurd, etc. From small to large.
Note, since the advent of smartphones, of the above OSs, Unix derivatives (Linux and Mac) are the most popular
26. Background
· Phones. Palm OS, Symbian, Windows CE/Mobile/Phone 7/Phone 8, Android, iPhone OS
· Experimental. Minix, Plan 9, Mach, Singularity, Amoeba, etc.
· Networking. NetWare (Novell), Cisco IOS, DD-WRT etc. For controlling networking hardware
· Distributed OSs. Management of collections of computers, or making a collection appear as a single large computer
27. Background
· Embedded. CLinux, Windows Embedded, RTOS, etc. Small, resource frugal
· Real-time. QNX, CLinux, etc. For controlling systems where a fast response is critical
· OSs for gadgets (MP3 players, etc.) Conservation of battery power is the largest problem
· Other. OS/2, MacOS 9, RISC OS, BeOS, z/OS (IBM). Various sizes
Again, remember that embedded OSs outnumber PC OSs by an order of magnitude
And we’ve not even mentioned historical OSs yet
28. Background
There are lots of operating systems out there, most we don’t notice
The ones we do notice are failing in their purpose!
ARX project Arthur OS RISC OS AmigaOS Amiga Unix AEGIS Domain/OS vikek OS Apple DOS UCSD Pascal ProDOS GS/OS SOS Lisa OS Newton OS Mac OS 8 Mac OS 9 A/UX MkLinux Mac OS X v10.x iOS Atari DOS Atari TOS Atari MultiTOS XTS-400 BeOS Blue Eyed OS Cosmoe GCOS Burroughs MCP COS SIPROS SCOPE MACE KRONOS NOS NOS/BE RDOS AOS DG/UX CTOS DOS Deos HeartOS CP/M DR-DOS OS/8 ITS TOPS-10 WAITS TENEX TOPS-20 RSTS/E RSX-11 RT-11 VMS Domain/OS TSB Digital UNIX HP-UX Ultrix Guardian OSS OSE Towns OS Google Chrome UTX-32 INTEGRITY HDOS HT-11 HP-UX HP MIE OLERT-E Multics HeartOS DEOS iRMX ISIS-II BESYS CTSS GM OS GM-NAA I/O IBSYS IJMON SOS UMES OS/360 OS/VS SVS OS/VSn MVS/SE OS/390 z/OS DOS/360 z/VSE CP/CMS VM/370 VM/XA VM/ESA z/VM AIX/370 OpenSolaris UTS z/Linux BOS/360 MTS MUSIC/SP ORVY WYLBUR PC DOS/IBM DOS OS/2 J MultiJob GEORGE 2/3/4 TME ICL VME iVideOS LynxOS MicroC/OS-II Xenix MS-DOS Windows Singularity Midori TMX NetWare MontaVista RTXC
