
Introduction to OS

An Operating System (OS) is just a program, often called the
kernel or monitor

Its purpose is to

• Manage the resources of the computer
• Provide the applications programmer (N.B., not the end

user of applications) with a usable programming interface
to access those resources



Introduction to OS

An Operating System (OS) is just a program, often called the
kernel or monitor

Its purpose is to

• Manage the resources of the computer
• Provide the applications programmer (N.B., not the end

user of applications) with a usable programming interface
to access those resources



Introduction to OS

An Operating System (OS) is just a program, often called the
kernel or monitor

Its purpose is to

• Manage the resources of the computer

• Provide the applications programmer (N.B., not the end
user of applications) with a usable programming interface
to access those resources



Introduction to OS

An Operating System (OS) is just a program, often called the
kernel or monitor

Its purpose is to

• Manage the resources of the computer
• Provide the applications programmer (N.B., not the end

user of applications) with a usable programming interface
to access those resources



The interface (graphical or otherwise) that the end user
interacts with is not part of the OS

That’s just another program that uses the OS

If the end-user sees it, it’s not part of this unit!



The interface (graphical or otherwise) that the end user
interacts with is not part of the OS

That’s just another program that uses the OS

If the end-user sees it, it’s not part of this unit!



The interface (graphical or otherwise) that the end user
interacts with is not part of the OS

That’s just another program that uses the OS

If the end-user sees it, it’s not part of this unit!



Resources

So what are resources?

• Hardware: cpu, memory, disk, network, sound, video,
keyboard, mouse, printer, camera, . . .

• Software: anything that controls the above, though use of
the cpu (running applications) is a primary focus



Resources

So what are resources?

• Hardware: cpu, memory, disk, network, sound, video,
keyboard, mouse, printer, camera, . . .

• Software: anything that controls the above, though use of
the cpu (running applications) is a primary focus



Resources

So what are resources?

• Hardware: cpu, memory, disk, network, sound, video,
keyboard, mouse, printer, camera, . . .

• Software: anything that controls the above, though use of
the cpu (running applications) is a primary focus



Resources

Why do they need managing?

1. They are limited with not enough to go round
2. They need protection
3. They need to meet certain criteria



Resources

Why do they need managing?

1. They are limited with not enough to go round

2. They need protection
3. They need to meet certain criteria



Resources

Why do they need managing?

1. They are limited with not enough to go round
2. They need protection

3. They need to meet certain criteria



Resources

Why do they need managing?

1. They are limited with not enough to go round
2. They need protection
3. They need to meet certain criteria



Resources
Limited?

Surely computers are so big and fast these days there is no
scarcity on resources?

Actually, most computers are small and very limited!

E.g., mobile phones have strict limitations on memory, cpu
power and energy consumption

Even big supercomputers are not yet big enough for many
people

My laptop is currently running about 370 programs



Resources
Limited?

Surely computers are so big and fast these days there is no
scarcity on resources?

Actually, most computers are small and very limited!

E.g., mobile phones have strict limitations on memory, cpu
power and energy consumption

Even big supercomputers are not yet big enough for many
people

My laptop is currently running about 370 programs



Resources
Limited?

Surely computers are so big and fast these days there is no
scarcity on resources?

Actually, most computers are small and very limited!

E.g., mobile phones have strict limitations on memory, cpu
power and energy consumption

Even big supercomputers are not yet big enough for many
people

My laptop is currently running about 370 programs



Resources
Limited?

Surely computers are so big and fast these days there is no
scarcity on resources?

Actually, most computers are small and very limited!

E.g., mobile phones have strict limitations on memory, cpu
power and energy consumption

Even big supercomputers are not yet big enough for many
people

My laptop is currently running about 370 programs



Resources
Limited?

Surely computers are so big and fast these days there is no
scarcity on resources?

Actually, most computers are small and very limited!

E.g., mobile phones have strict limitations on memory, cpu
power and energy consumption

Even big supercomputers are not yet big enough for many
people

My laptop is currently running about 370 programs



Resources
Protection

Protection comes in many forms

• Preventing one program from accidentally (or intentionally)
corrupting another program or its data: security

• Ensuring certain resources are only available to those
programs that are allowed: authorisation

• Protecting you from your own stupid mistakes (Did you
really want to delete that?)



Resources
Protection

Protection comes in many forms

• Preventing one program from accidentally (or intentionally)
corrupting another program or its data: security

• Ensuring certain resources are only available to those
programs that are allowed: authorisation

• Protecting you from your own stupid mistakes (Did you
really want to delete that?)



Resources
Protection

Protection comes in many forms

• Preventing one program from accidentally (or intentionally)
corrupting another program or its data: security

• Ensuring certain resources are only available to those
programs that are allowed: authorisation

• Protecting you from your own stupid mistakes (Did you
really want to delete that?)



Resources
Protection

Protection comes in many forms

• Preventing one program from accidentally (or intentionally)
corrupting another program or its data: security

• Ensuring certain resources are only available to those
programs that are allowed: authorisation

• Protecting you from your own stupid mistakes (Did you
really want to delete that?)



Resources
Criteria

Popular criteria include

• Responsiveness: making a program respond snappily or
processing network packets as they arrive

• Real Time: certain events must be dealt with in a (small)
fixed amount of time, e.g., the controlling flaps on an
airplane’s wing, video streaming

• Security: prevention of accidental or malicious access or
modification



Resources
Criteria

Popular criteria include

• Responsiveness: making a program respond snappily or
processing network packets as they arrive

• Real Time: certain events must be dealt with in a (small)
fixed amount of time, e.g., the controlling flaps on an
airplane’s wing, video streaming

• Security: prevention of accidental or malicious access or
modification



Resources
Criteria

Popular criteria include

• Responsiveness: making a program respond snappily or
processing network packets as they arrive

• Real Time: certain events must be dealt with in a (small)
fixed amount of time, e.g., the controlling flaps on an
airplane’s wing, video streaming

• Security: prevention of accidental or malicious access or
modification



Resources
Criteria

Popular criteria include

• Responsiveness: making a program respond snappily or
processing network packets as they arrive

• Real Time: certain events must be dealt with in a (small)
fixed amount of time, e.g., the controlling flaps on an
airplane’s wing, video streaming

• Security: prevention of accidental or malicious access or
modification



Programming Interface

Another purpose of an OS is to provide an interface for the
programmer:

The programmer who has to write applications for the machine
does not want to have to know the details of the hardware:
think portability (c.f. von Neumann’s model)

• How do I prod this hardware to get it to do what I want?
• How do I get the best performance out of this disk,

network, video?
• How should I deal with interrupts?
• And so on



Programming Interface

Another purpose of an OS is to provide an interface for the
programmer:

The programmer who has to write applications for the machine
does not want to have to know the details of the hardware:
think portability (c.f. von Neumann’s model)

• How do I prod this hardware to get it to do what I want?
• How do I get the best performance out of this disk,

network, video?
• How should I deal with interrupts?
• And so on



Programming Interface

Another purpose of an OS is to provide an interface for the
programmer:

The programmer who has to write applications for the machine
does not want to have to know the details of the hardware:
think portability (c.f. von Neumann’s model)

• How do I prod this hardware to get it to do what I want?

• How do I get the best performance out of this disk,
network, video?

• How should I deal with interrupts?
• And so on



Programming Interface

Another purpose of an OS is to provide an interface for the
programmer:

The programmer who has to write applications for the machine
does not want to have to know the details of the hardware:
think portability (c.f. von Neumann’s model)

• How do I prod this hardware to get it to do what I want?
• How do I get the best performance out of this disk,

network, video?

• How should I deal with interrupts?
• And so on



Programming Interface

Another purpose of an OS is to provide an interface for the
programmer:

The programmer who has to write applications for the machine
does not want to have to know the details of the hardware:
think portability (c.f. von Neumann’s model)

• How do I prod this hardware to get it to do what I want?
• How do I get the best performance out of this disk,

network, video?
• How should I deal with interrupts?

• And so on



Programming Interface

Another purpose of an OS is to provide an interface for the
programmer:

The programmer who has to write applications for the machine
does not want to have to know the details of the hardware:
think portability (c.f. von Neumann’s model)

• How do I prod this hardware to get it to do what I want?
• How do I get the best performance out of this disk,

network, video?
• How should I deal with interrupts?
• And so on



Programming Interface

We don’t want to have to re-implement everything in every
program

So the OS does this kind of thing for us

Early programmers, before OSs, had to do it all themselves, for
every program they wrote

Much better to let someone else do the hard work (a common
theme in Computer Science)



Programming Interface

We don’t want to have to re-implement everything in every
program

So the OS does this kind of thing for us

Early programmers, before OSs, had to do it all themselves, for
every program they wrote

Much better to let someone else do the hard work (a common
theme in Computer Science)



Programming Interface

We don’t want to have to re-implement everything in every
program

So the OS does this kind of thing for us

Early programmers, before OSs, had to do it all themselves, for
every program they wrote

Much better to let someone else do the hard work (a common
theme in Computer Science)



Programming Interface

We don’t want to have to re-implement everything in every
program

So the OS does this kind of thing for us

Early programmers, before OSs, had to do it all themselves, for
every program they wrote

Much better to let someone else do the hard work (a common
theme in Computer Science)



Programming Interface

Having an expert do this stuff once and provide a standard
interface to it for us to use is much better for us

• We don’t have do it
• The expert is better at it and (presumably) understands the

hardware well
• The expert is a better programmer than us and can get

better performance out of the hardware
• The programmer knows more Computer Science than us

and knows the many pitfalls and necessary tricks that OS
programming involves



Programming Interface

Having an expert do this stuff once and provide a standard
interface to it for us to use is much better for us

• We don’t have do it

• The expert is better at it and (presumably) understands the
hardware well

• The expert is a better programmer than us and can get
better performance out of the hardware

• The programmer knows more Computer Science than us
and knows the many pitfalls and necessary tricks that OS
programming involves



Programming Interface

Having an expert do this stuff once and provide a standard
interface to it for us to use is much better for us

• We don’t have do it
• The expert is better at it and (presumably) understands the

hardware well

• The expert is a better programmer than us and can get
better performance out of the hardware

• The programmer knows more Computer Science than us
and knows the many pitfalls and necessary tricks that OS
programming involves



Programming Interface

Having an expert do this stuff once and provide a standard
interface to it for us to use is much better for us

• We don’t have do it
• The expert is better at it and (presumably) understands the

hardware well
• The expert is a better programmer than us and can get

better performance out of the hardware

• The programmer knows more Computer Science than us
and knows the many pitfalls and necessary tricks that OS
programming involves



Programming Interface

Having an expert do this stuff once and provide a standard
interface to it for us to use is much better for us

• We don’t have do it
• The expert is better at it and (presumably) understands the

hardware well
• The expert is a better programmer than us and can get

better performance out of the hardware
• The programmer knows more Computer Science than us

and knows the many pitfalls and necessary tricks that OS
programming involves



Programming Interface

They do it so we don’t have to



Programming Interface

Layer Abstraction:

Hardware PC, phone, PVR, SatNav

OS Linux, OS X, Windows, Android

System libraries Maths, graphics, sound

(G)UI Command line, windowing, touch

Applications Browser, word processor, game



Programming Interface

Layer Abstraction:

Hardware PC, phone, PVR, SatNav

OS Linux, OS X, Windows, Android

System libraries Maths, graphics, sound

(G)UI Command line, windowing, touch

Applications Browser, word processor, game



Programming Interface

Layer Abstraction:

Hardware PC, phone, PVR, SatNav

OS Linux, OS X, Windows, Android

System libraries Maths, graphics, sound

(G)UI Command line, windowing, touch

Applications Browser, word processor, game



Programming Interface

Layer Abstraction:

Hardware PC, phone, PVR, SatNav

OS Linux, OS X, Windows, Android

System libraries Maths, graphics, sound

(G)UI Command line, windowing, touch

Applications Browser, word processor, game



Programming Interface

Layer Abstraction:

Hardware PC, phone, PVR, SatNav

OS Linux, OS X, Windows, Android

System libraries Maths, graphics, sound

(G)UI Command line, windowing, touch

Applications Browser, word processor, game



Important Point

Reemphasising a very important point:

The GUI is not part of the OS

The GUI is just another program that uses the OS

There was a time when certain OS vendors tried to tie the GUI
into the OS (to gain speed and commercial advantage)



Important Point

Reemphasising a very important point:

The GUI is not part of the OS

The GUI is just another program that uses the OS

There was a time when certain OS vendors tried to tie the GUI
into the OS (to gain speed and commercial advantage)



Important Point

Reemphasising a very important point:

The GUI is not part of the OS

The GUI is just another program that uses the OS

There was a time when certain OS vendors tried to tie the GUI
into the OS (to gain speed and commercial advantage)



Programming Interface

Bad Layer Abstraction:

Hardware PC

OS Windows

System libraries Maths, graphics, sound

GUI Windows

Applications Browser, word processor, game



Programming Interface

Very Bad Layer Abstraction:

Hardware PC

OS Windows

System libraries Maths, graphics, sound

GUI Windows

Applications Browser, word processor, game



Programming Interface

This is poor design and should be avoided

It was a huge source of problems: bugs in the GUI or the
application would cause the OS to crash, so a poorly written
program could take out the whole machine

It was an easy way to circumvent the security the OS provides,
thus allowing attackers to access the machine

An application, like a browser, could gain control of the
hardware

Fortunately things have progressed since then

Mostly



Programming Interface

This is poor design and should be avoided

It was a huge source of problems: bugs in the GUI or the
application would cause the OS to crash, so a poorly written
program could take out the whole machine

It was an easy way to circumvent the security the OS provides,
thus allowing attackers to access the machine

An application, like a browser, could gain control of the
hardware

Fortunately things have progressed since then

Mostly



Programming Interface

This is poor design and should be avoided

It was a huge source of problems: bugs in the GUI or the
application would cause the OS to crash, so a poorly written
program could take out the whole machine

It was an easy way to circumvent the security the OS provides,
thus allowing attackers to access the machine

An application, like a browser, could gain control of the
hardware

Fortunately things have progressed since then

Mostly



Programming Interface

This is poor design and should be avoided

It was a huge source of problems: bugs in the GUI or the
application would cause the OS to crash, so a poorly written
program could take out the whole machine

It was an easy way to circumvent the security the OS provides,
thus allowing attackers to access the machine

An application, like a browser, could gain control of the
hardware

Fortunately things have progressed since then

Mostly



Programming Interface

This is poor design and should be avoided

It was a huge source of problems: bugs in the GUI or the
application would cause the OS to crash, so a poorly written
program could take out the whole machine

It was an easy way to circumvent the security the OS provides,
thus allowing attackers to access the machine

An application, like a browser, could gain control of the
hardware

Fortunately things have progressed since then

Mostly



Programming Interface

This is poor design and should be avoided

It was a huge source of problems: bugs in the GUI or the
application would cause the OS to crash, so a poorly written
program could take out the whole machine

It was an easy way to circumvent the security the OS provides,
thus allowing attackers to access the machine

An application, like a browser, could gain control of the
hardware

Fortunately things have progressed since then

Mostly



Another Important Point

The GUI is just a program, so it quite possible to have
similar-looking GUIs running on different OSs; and
different-looking GUIs running on the same OS

But we must be careful as some people don’t realise the
difference between an OS and everything else



Another Important Point

The GUI is just a program, so it quite possible to have
similar-looking GUIs running on different OSs; and
different-looking GUIs running on the same OS

But we must be careful as some people don’t realise the
difference between an OS and everything else



Programming Interface

CS view:

Hardware

OS OS

System libraries

GUI

Applications



Programming Interface

Marketer’s view:

Hardware

OS OS

System libraries OS

GUI OS

Applications OS?



One more thing

There are a couple of vital aspects of an OS that are
sometimes overlooked:

1. It should be efficient and lightweight: every CPU cycle that
the OS uses is one that is taken away from the user’s
programs

2. It should be flexible and not get in the way of the
programmer

So a perfect OS would be completely invisible!



One more thing

There are a couple of vital aspects of an OS that are
sometimes overlooked:

1. It should be efficient and lightweight: every CPU cycle that
the OS uses is one that is taken away from the user’s
programs

2. It should be flexible and not get in the way of the
programmer

So a perfect OS would be completely invisible!



One more thing

There are a couple of vital aspects of an OS that are
sometimes overlooked:

1. It should be efficient and lightweight: every CPU cycle that
the OS uses is one that is taken away from the user’s
programs

2. It should be flexible and not get in the way of the
programmer

So a perfect OS would be completely invisible!



One more thing

There are a couple of vital aspects of an OS that are
sometimes overlooked:

1. It should be efficient and lightweight: every CPU cycle that
the OS uses is one that is taken away from the user’s
programs

2. It should be flexible and not get in the way of the
programmer

So a perfect OS would be completely invisible!



Background

Operating Systems have been around nearly as long as
computers

. . . but not quite as long

So long, though, that some (most!) people don’t distinguish
between computers and their OS

Computer Scientists ought to be more careful

So some people confuse the GUI with the OS; many confuse
the GUI with the OS and the hardware!



Background

Operating Systems have been around nearly as long as
computers

. . . but not quite as long

So long, though, that some (most!) people don’t distinguish
between computers and their OS

Computer Scientists ought to be more careful

So some people confuse the GUI with the OS; many confuse
the GUI with the OS and the hardware!



Background

Operating Systems have been around nearly as long as
computers

. . . but not quite as long

So long, though, that some (most!) people don’t distinguish
between computers and their OS

Computer Scientists ought to be more careful

So some people confuse the GUI with the OS; many confuse
the GUI with the OS and the hardware!



Background

Operating Systems have been around nearly as long as
computers

. . . but not quite as long

So long, though, that some (most!) people don’t distinguish
between computers and their OS

Computer Scientists ought to be more careful

So some people confuse the GUI with the OS; many confuse
the GUI with the OS and the hardware!



Background

Operating Systems have been around nearly as long as
computers

. . . but not quite as long

So long, though, that some (most!) people don’t distinguish
between computers and their OS

Computer Scientists ought to be more careful

So some people confuse the GUI with the OS; many confuse
the GUI with the OS and the hardware!



Background

An OS is just a program so

• we can have different OSs on the same hardware
• we can have the same OS on different hardware



Background

An OS is just a program so

• we can have different OSs on the same hardware

• we can have the same OS on different hardware



Background

An OS is just a program so

• we can have different OSs on the same hardware
• we can have the same OS on different hardware



Background

• On Intel hardware (“PC”) you can run Windows, MacOS,
Linux (and lots of others)

• Until recently Mac hardware was the same as PC
hardware, so you can run all of the above on a Mac — the
new Mac M1 is effectively only slightly different and still run
Linux

• Linux runs on many kinds of hardware, including Intel,
mainframes (IBM, Oracle/Sun), million processor clusters,
phones (ARM), gadgets like satnavs, TVs and PVRs

N.B. when we say “Intel” or “x86” we mean Intel, AMD and all
the compatible architectures



Background

• On Intel hardware (“PC”) you can run Windows, MacOS,
Linux (and lots of others)

• Until recently Mac hardware was the same as PC
hardware, so you can run all of the above on a Mac — the
new Mac M1 is effectively only slightly different and still run
Linux

• Linux runs on many kinds of hardware, including Intel,
mainframes (IBM, Oracle/Sun), million processor clusters,
phones (ARM), gadgets like satnavs, TVs and PVRs

N.B. when we say “Intel” or “x86” we mean Intel, AMD and all
the compatible architectures



Background

• On Intel hardware (“PC”) you can run Windows, MacOS,
Linux (and lots of others)

• Until recently Mac hardware was the same as PC
hardware, so you can run all of the above on a Mac — the
new Mac M1 is effectively only slightly different and still run
Linux

• Linux runs on many kinds of hardware, including Intel,
mainframes (IBM, Oracle/Sun), million processor clusters,
phones (ARM), gadgets like satnavs, TVs and PVRs

N.B. when we say “Intel” or “x86” we mean Intel, AMD and all
the compatible architectures



Background

• On Intel hardware (“PC”) you can run Windows, MacOS,
Linux (and lots of others)

• Until recently Mac hardware was the same as PC
hardware, so you can run all of the above on a Mac — the
new Mac M1 is effectively only slightly different and still run
Linux

• Linux runs on many kinds of hardware, including Intel,
mainframes (IBM, Oracle/Sun), million processor clusters,
phones (ARM), gadgets like satnavs, TVs and PVRs

N.B. when we say “Intel” or “x86” we mean Intel, AMD and all
the compatible architectures



Background

The understanding of the general public is such that they get
the hardware and software confused

And, more, they are usually thinking about the GUI, not the OS

Some software companies encourage and make capital out of
this confusion



Background

The understanding of the general public is such that they get
the hardware and software confused

And, more, they are usually thinking about the GUI, not the OS

Some software companies encourage and make capital out of
this confusion



Background

The understanding of the general public is such that they get
the hardware and software confused

And, more, they are usually thinking about the GUI, not the OS

Some software companies encourage and make capital out of
this confusion



Background

There is some reason for this confusion: Microsoft and Apple
tie their GUIs indivisibly to their OSs

Other OSs, notably Linux, allow the user a choice of many UIs
and GUIs all running on the same OS kernel

But typical users base their choices on GUIs, not OSs



Background

There is some reason for this confusion: Microsoft and Apple
tie their GUIs indivisibly to their OSs

Other OSs, notably Linux, allow the user a choice of many UIs
and GUIs all running on the same OS kernel

But typical users base their choices on GUIs, not OSs



Background

There is some reason for this confusion: Microsoft and Apple
tie their GUIs indivisibly to their OSs

Other OSs, notably Linux, allow the user a choice of many UIs
and GUIs all running on the same OS kernel

But typical users base their choices on GUIs, not OSs



Background

As applications programmers, we should choose an OS for the
features that it provides:

• Ease of use
• Efficiency
• Security
• Stability
• Suitability for the task in hand
• And so on



Background

As applications programmers, we should choose an OS for the
features that it provides:

• Ease of use

• Efficiency
• Security
• Stability
• Suitability for the task in hand
• And so on



Background

As applications programmers, we should choose an OS for the
features that it provides:

• Ease of use
• Efficiency

• Security
• Stability
• Suitability for the task in hand
• And so on



Background

As applications programmers, we should choose an OS for the
features that it provides:

• Ease of use
• Efficiency
• Security

• Stability
• Suitability for the task in hand
• And so on



Background

As applications programmers, we should choose an OS for the
features that it provides:

• Ease of use
• Efficiency
• Security
• Stability

• Suitability for the task in hand
• And so on



Background

As applications programmers, we should choose an OS for the
features that it provides:

• Ease of use
• Efficiency
• Security
• Stability
• Suitability for the task in hand

• And so on



Background

As applications programmers, we should choose an OS for the
features that it provides:

• Ease of use
• Efficiency
• Security
• Stability
• Suitability for the task in hand
• And so on



Background

Just a few recent operating systems:

• XP/Vista/Windows 7/Windows 8/Windows 10 from
Microsoft. Large, resource intensive, highly featured,
previously Intel processor only, now Intel and ARM

• OS X from Apple. Large, not quite so intensive, highly
featured. Based on BSD (Unix), on Intel and ARM
processors (Earlier: PowerPC)

• Unixes. Solaris from Sun/Oracle, IRIX from SGI, AIX from
IBM, OSF/1 from DEC, etc. Large to medium.

• Unix derivatives (reimplementations). Various BSD
(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux and Mac) are the most popular



Background

Just a few recent operating systems:

• XP/Vista/Windows 7/Windows 8/Windows 10 from
Microsoft. Large, resource intensive, highly featured,
previously Intel processor only, now Intel and ARM

• OS X from Apple. Large, not quite so intensive, highly
featured. Based on BSD (Unix), on Intel and ARM
processors (Earlier: PowerPC)

• Unixes. Solaris from Sun/Oracle, IRIX from SGI, AIX from
IBM, OSF/1 from DEC, etc. Large to medium.

• Unix derivatives (reimplementations). Various BSD
(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux and Mac) are the most popular



Background

Just a few recent operating systems:

• XP/Vista/Windows 7/Windows 8/Windows 10 from
Microsoft. Large, resource intensive, highly featured,
previously Intel processor only, now Intel and ARM

• OS X from Apple. Large, not quite so intensive, highly
featured. Based on BSD (Unix), on Intel and ARM
processors (Earlier: PowerPC)

• Unixes. Solaris from Sun/Oracle, IRIX from SGI, AIX from
IBM, OSF/1 from DEC, etc. Large to medium.

• Unix derivatives (reimplementations). Various BSD
(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux and Mac) are the most popular



Background

Just a few recent operating systems:

• XP/Vista/Windows 7/Windows 8/Windows 10 from
Microsoft. Large, resource intensive, highly featured,
previously Intel processor only, now Intel and ARM

• OS X from Apple. Large, not quite so intensive, highly
featured. Based on BSD (Unix), on Intel and ARM
processors (Earlier: PowerPC)

• Unixes. Solaris from Sun/Oracle, IRIX from SGI, AIX from
IBM, OSF/1 from DEC, etc. Large to medium.

• Unix derivatives (reimplementations). Various BSD
(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux and Mac) are the most popular



Background

Just a few recent operating systems:

• XP/Vista/Windows 7/Windows 8/Windows 10 from
Microsoft. Large, resource intensive, highly featured,
previously Intel processor only, now Intel and ARM

• OS X from Apple. Large, not quite so intensive, highly
featured. Based on BSD (Unix), on Intel and ARM
processors (Earlier: PowerPC)

• Unixes. Solaris from Sun/Oracle, IRIX from SGI, AIX from
IBM, OSF/1 from DEC, etc. Large to medium.

• Unix derivatives (reimplementations). Various BSD
(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux and Mac) are the most popular



Background

Just a few recent operating systems:

• XP/Vista/Windows 7/Windows 8/Windows 10 from
Microsoft. Large, resource intensive, highly featured,
previously Intel processor only, now Intel and ARM

• OS X from Apple. Large, not quite so intensive, highly
featured. Based on BSD (Unix), on Intel and ARM
processors (Earlier: PowerPC)

• Unixes. Solaris from Sun/Oracle, IRIX from SGI, AIX from
IBM, OSF/1 from DEC, etc. Large to medium.

• Unix derivatives (reimplementations). Various BSD
(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux and Mac) are the most popular



Background

• Phones. Palm OS, Symbian, Windows CE/Mobile/Phone
7/Phone 8, Android, iPhone OS

• Experimental. Minix, Plan 9, Mach, Singularity, Amoeba,
etc.

• Networking. NetWare (Novell), Cisco IOS, DD-WRT etc.
For controlling networking hardware

• Distributed OSs. Management of collections of computers,
or making a collection appear as a single large computer



Background

• Embedded. µCLinux, Windows Embedded, RTOS, etc.
Small, resource frugal

• Real-time. QNX, µCLinux, etc. For controlling systems
where a fast response is critical

• OSs for gadgets (MP3 players, etc.) Conservation of
battery power is the largest problem

• Other. OS/2, MacOS 9, RISC OS, BeOS, z/OS (IBM).
Various sizes

Again, remember that embedded OSs outnumber PC OSs by
an order of magnitude

And we’ve not even mentioned historical OSs yet



Background

• Embedded. µCLinux, Windows Embedded, RTOS, etc.
Small, resource frugal

• Real-time. QNX, µCLinux, etc. For controlling systems
where a fast response is critical

• OSs for gadgets (MP3 players, etc.) Conservation of
battery power is the largest problem

• Other. OS/2, MacOS 9, RISC OS, BeOS, z/OS (IBM).
Various sizes

Again, remember that embedded OSs outnumber PC OSs by
an order of magnitude

And we’ve not even mentioned historical OSs yet



Background

• Embedded. µCLinux, Windows Embedded, RTOS, etc.
Small, resource frugal

• Real-time. QNX, µCLinux, etc. For controlling systems
where a fast response is critical

• OSs for gadgets (MP3 players, etc.) Conservation of
battery power is the largest problem

• Other. OS/2, MacOS 9, RISC OS, BeOS, z/OS (IBM).
Various sizes

Again, remember that embedded OSs outnumber PC OSs by
an order of magnitude

And we’ve not even mentioned historical OSs yet



Background

There are lots of operating systems out there, most we don’t
notice

The ones we do notice are failing in their purpose!



Background

There are lots of operating systems out there, most we don’t
notice

The ones we do notice are failing in their purpose!



ARX project Arthur OS RISC OS AmigaOS Amiga Unix AEGIS
Domain/OS vikek OS Apple DOS UCSD Pascal ProDOS GS/OS
SOS Lisa OS Newton OS Mac OS 8 Mac OS 9 A/UX MkLinux Mac
OS X v10.x iOS Atari DOS Atari TOS Atari MultiTOS XTS-400 BeOS
Blue Eyed OS Cosmoe GCOS Burroughs MCP COS SIPROS
SCOPE MACE KRONOS NOS NOS/BE RDOS AOS DG/UX CTOS
DOS Deos HeartOS CP/M DR-DOS OS/8 ITS TOPS-10 WAITS
TENEX TOPS-20 RSTS/E RSX-11 RT-11 VMS Domain/OS TSB
Digital UNIX HP-UX Ultrix Guardian OSS OSE Towns OS Google
Chrome UTX-32 INTEGRITY HDOS HT-11 HP-UX HP MIE OLERT-E
Multics HeartOS DEOS iRMX ISIS-II BESYS CTSS GM OS GM-NAA
I/O IBSYS IJMON SOS UMES OS/360 OS/VS SVS OS/VSn MVS/SE
OS/390 z/OS DOS/360 z/VSE CP/CMS VM/370 VM/XA VM/ESA
z/VM AIX/370 OpenSolaris UTS z/Linux BOS/360 MTS MUSIC/SP
ORVY WYLBUR PC DOS/IBM DOS OS/2 J MultiJob GEORGE 2/3/4
TME ICL VME iVideOS LynxOS MicroC/OS-II Xenix MS-DOS
Windows Singularity Midori TMX NetWare MontaVista RTXC


