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E.g., mobile phones have strict limitations on memory, cpu
power and energy consumption

Even big supercomputers are not yet big enough for many
people

My laptop is currently running about 370 programs
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• Ensuring certain resources are only available to those
programs that are allowed: authorisation

• Protecting you from your own stupid mistakes (Did you
really want to delete that?)
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• Real Time: certain events must be dealt with in a (small)
fixed amount of time, e.g., the controlling flaps on an
airplane’s wing, video streaming

• Security: prevention of accidental or malicious access or
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Another purpose of an OS is to provide an interface for the
programmer:

The programmer who has to write applications for the machine
does not want to have to know the details of the hardware:
think portability (c.f. von Neumann’s model)

• How do I prod this hardware to get it to do what I want?
• How do I get the best performance out of this disk,

network, video?
• How should I deal with interrupts?
• And so on
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We don’t want to have to re-implement everything in every
program

So the OS does this kind of thing for us

Early programmers, before OSs, had to do it all themselves, for
every program they wrote

Much better to let someone else do the hard work (a common
theme in Computer Science)
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It was a huge source of problems: bugs in the GUI or the
application would cause the OS to crash, so a poorly written
program could take out the whole machine

It was an easy way to circumvent the security the OS provides,
thus allowing attackers to access the machine

An application, like a browser, could gain control of the
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Fortunately things have progressed since then
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difference between an OS and everything else
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There are a couple of vital aspects of an OS that are
sometimes overlooked:

1. It should be efficient and lightweight: every CPU cycle that
the OS uses is one that is taken away from the user’s
programs

2. It should be flexible and not get in the way of the
programmer

So a perfect OS would be completely invisible!
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Computer Scientists ought to be more careful
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• On Intel hardware (“PC”) you can run Windows, MacOS,
Linux (and lots of others)

• Until recently Mac hardware was the same as PC
hardware, so you can run all of the above on a Mac — the
new Mac M1 is effectively only slightly different and still run
Linux

• Linux runs on many kinds of hardware, including Intel,
mainframes (IBM, Oracle/Sun), million processor clusters,
phones (ARM), gadgets like satnavs, TVs and PVRs

N.B. when we say “Intel” or “x86” we mean Intel, AMD and all
the compatible architectures
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Background

Just a few recent operating systems:

• XP/Vista/Windows 7/Windows 8/Windows 10 from
Microsoft. Large, resource intensive, highly featured,
previously Intel processor only, now Intel and ARM

• OS X from Apple. Large, not quite so intensive, highly
featured. Based on BSD (Unix), on Intel and ARM
processors (Earlier: PowerPC)

• Unixes. Solaris from Sun/Oracle, IRIX from SGI, AIX from
IBM, OSF/1 from DEC, etc. Large to medium.

• Unix derivatives (reimplementations). Various BSD
(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux and Mac) are the most popular
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(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux and Mac) are the most popular
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• Phones. Palm OS, Symbian, Windows CE/Mobile/Phone
7/Phone 8, Android, iPhone OS

• Experimental. Minix, Plan 9, Mach, Singularity, Amoeba,
etc.

• Networking. NetWare (Novell), Cisco IOS, DD-WRT etc.
For controlling networking hardware

• Distributed OSs. Management of collections of computers,
or making a collection appear as a single large computer



Background

• Embedded. µCLinux, Windows Embedded, RTOS, etc.
Small, resource frugal

• Real-time. QNX, µCLinux, etc. For controlling systems
where a fast response is critical

• OSs for gadgets (MP3 players, etc.) Conservation of
battery power is the largest problem

• Other. OS/2, MacOS 9, RISC OS, BeOS, z/OS (IBM).
Various sizes

Again, remember that embedded OSs outnumber PC OSs by
an order of magnitude

And we’ve not even mentioned historical OSs yet
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There are lots of operating systems out there, most we don’t
notice

The ones we do notice are failing in their purpose!
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ARX project Arthur OS RISC OS AmigaOS Amiga Unix AEGIS
Domain/OS vikek OS Apple DOS UCSD Pascal ProDOS GS/OS
SOS Lisa OS Newton OS Mac OS 8 Mac OS 9 A/UX MkLinux Mac
OS X v10.x iOS Atari DOS Atari TOS Atari MultiTOS XTS-400 BeOS
Blue Eyed OS Cosmoe GCOS Burroughs MCP COS SIPROS
SCOPE MACE KRONOS NOS NOS/BE RDOS AOS DG/UX CTOS
DOS Deos HeartOS CP/M DR-DOS OS/8 ITS TOPS-10 WAITS
TENEX TOPS-20 RSTS/E RSX-11 RT-11 VMS Domain/OS TSB
Digital UNIX HP-UX Ultrix Guardian OSS OSE Towns OS Google
Chrome UTX-32 INTEGRITY HDOS HT-11 HP-UX HP MIE OLERT-E
Multics HeartOS DEOS iRMX ISIS-II BESYS CTSS GM OS GM-NAA
I/O IBSYS IJMON SOS UMES OS/360 OS/VS SVS OS/VSn MVS/SE
OS/390 z/OS DOS/360 z/VSE CP/CMS VM/370 VM/XA VM/ESA
z/VM AIX/370 OpenSolaris UTS z/Linux BOS/360 MTS MUSIC/SP
ORVY WYLBUR PC DOS/IBM DOS OS/2 J MultiJob GEORGE 2/3/4
TME ICL VME iVideOS LynxOS MicroC/OS-II Xenix MS-DOS
Windows Singularity Midori TMX NetWare MontaVista RTXC


