
History

We are now going to look at some history: this is useful as it
will illustrate the many important parts of OSs and why they are
necessary

At first, computers had no operating systems (1960s)

• Every programmer had to write their programs for the
particular machine they were using

• So no portability
• And lots of repeated code between programs (“write a

character to the teletype”)

Remember: the more we make programmers do, the more
likely they are going to make a mistake



History

We are now going to look at some history: this is useful as it
will illustrate the many important parts of OSs and why they are
necessary

At first, computers had no operating systems (1960s)

• Every programmer had to write their programs for the
particular machine they were using

• So no portability
• And lots of repeated code between programs (“write a

character to the teletype”)

Remember: the more we make programmers do, the more
likely they are going to make a mistake



History

We are now going to look at some history: this is useful as it
will illustrate the many important parts of OSs and why they are
necessary

At first, computers had no operating systems (1960s)

• Every programmer had to write their programs for the
particular machine they were using

• So no portability
• And lots of repeated code between programs (“write a

character to the teletype”)

Remember: the more we make programmers do, the more
likely they are going to make a mistake



History

We are now going to look at some history: this is useful as it
will illustrate the many important parts of OSs and why they are
necessary

At first, computers had no operating systems (1960s)

• Every programmer had to write their programs for the
particular machine they were using

• So no portability

• And lots of repeated code between programs (“write a
character to the teletype”)

Remember: the more we make programmers do, the more
likely they are going to make a mistake



History

We are now going to look at some history: this is useful as it
will illustrate the many important parts of OSs and why they are
necessary

At first, computers had no operating systems (1960s)

• Every programmer had to write their programs for the
particular machine they were using

• So no portability
• And lots of repeated code between programs (“write a

character to the teletype”)

Remember: the more we make programmers do, the more
likely they are going to make a mistake



History

We are now going to look at some history: this is useful as it
will illustrate the many important parts of OSs and why they are
necessary

At first, computers had no operating systems (1960s)

• Every programmer had to write their programs for the
particular machine they were using

• So no portability
• And lots of repeated code between programs (“write a

character to the teletype”)

Remember: the more we make programmers do, the more
likely they are going to make a mistake



History

Furthermore, programmers rarely even saw the computer

• The program and the data is needed (collectively called a
job) would be prepared on paper tape or punched card

• Jobs would be given to operators who would load and run
them, collect the results and then send the results back to
the programmer

• Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

• As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

• Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!



History

Furthermore, programmers rarely even saw the computer

• The program and the data is needed (collectively called a
job) would be prepared on paper tape or punched card

• Jobs would be given to operators who would load and run
them, collect the results and then send the results back to
the programmer

• Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

• As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

• Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!



History

Furthermore, programmers rarely even saw the computer

• The program and the data is needed (collectively called a
job) would be prepared on paper tape or punched card

• Jobs would be given to operators who would load and run
them, collect the results and then send the results back to
the programmer

• Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

• As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

• Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!



History

Furthermore, programmers rarely even saw the computer

• The program and the data is needed (collectively called a
job) would be prepared on paper tape or punched card

• Jobs would be given to operators who would load and run
them, collect the results and then send the results back to
the programmer

• Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

• As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

• Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!



History

Furthermore, programmers rarely even saw the computer

• The program and the data is needed (collectively called a
job) would be prepared on paper tape or punched card

• Jobs would be given to operators who would load and run
them, collect the results and then send the results back to
the programmer

• Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

• As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

• Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!



History

Furthermore, programmers rarely even saw the computer

• The program and the data is needed (collectively called a
job) would be prepared on paper tape or punched card

• Jobs would be given to operators who would load and run
them, collect the results and then send the results back to
the programmer

• Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

• As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

• Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!



History

Furthermore, programmers rarely even saw the computer

• The program and the data is needed (collectively called a
job) would be prepared on paper tape or punched card

• Jobs would be given to operators who would load and run
them, collect the results and then send the results back to
the programmer

• Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

• As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

• Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!



History

From Wikipedia. Encodes a single 80 character line



History

From Wikipedia. 5 and 8 hole paper tapes



History

It was soon found there was a lot of repeated code between
programs, so useful tools (programs and libraries of code) were
developed to help manage repetitive tasks

• collecting common functions in system libraries (sqrt, open
file, etc.)

• program management (loaders)
• debuggers
• Interfacing to hardware: I/O drivers (send file to printer,

etc.)

This made programming and program management easier, but
there was still lots of human intervention needed



History

It was soon found there was a lot of repeated code between
programs, so useful tools (programs and libraries of code) were
developed to help manage repetitive tasks

• collecting common functions in system libraries (sqrt, open
file, etc.)

• program management (loaders)
• debuggers
• Interfacing to hardware: I/O drivers (send file to printer,

etc.)

This made programming and program management easier, but
there was still lots of human intervention needed



History

It was soon found there was a lot of repeated code between
programs, so useful tools (programs and libraries of code) were
developed to help manage repetitive tasks

• collecting common functions in system libraries (sqrt, open
file, etc.)

• program management (loaders)

• debuggers
• Interfacing to hardware: I/O drivers (send file to printer,

etc.)

This made programming and program management easier, but
there was still lots of human intervention needed



History

It was soon found there was a lot of repeated code between
programs, so useful tools (programs and libraries of code) were
developed to help manage repetitive tasks

• collecting common functions in system libraries (sqrt, open
file, etc.)

• program management (loaders)
• debuggers

• Interfacing to hardware: I/O drivers (send file to printer,
etc.)

This made programming and program management easier, but
there was still lots of human intervention needed



History

It was soon found there was a lot of repeated code between
programs, so useful tools (programs and libraries of code) were
developed to help manage repetitive tasks

• collecting common functions in system libraries (sqrt, open
file, etc.)

• program management (loaders)
• debuggers
• Interfacing to hardware: I/O drivers (send file to printer,

etc.)

This made programming and program management easier, but
there was still lots of human intervention needed



History

It was soon found there was a lot of repeated code between
programs, so useful tools (programs and libraries of code) were
developed to help manage repetitive tasks

• collecting common functions in system libraries (sqrt, open
file, etc.)

• program management (loaders)
• debuggers
• Interfacing to hardware: I/O drivers (send file to printer,

etc.)

This made programming and program management easier, but
there was still lots of human intervention needed



History

The issue was to keep the big and expensive computer as busy
as possible, running programs all the time

Idle time was a waste of money

So the operators would load many programs on to a fast
medium, such as magnetic tape, and the computer would load
and run them as fast as hardware allowed

This was called spooling, the first instance of addressing the
disparity between human and computer speeds



History

The issue was to keep the big and expensive computer as busy
as possible, running programs all the time

Idle time was a waste of money

So the operators would load many programs on to a fast
medium, such as magnetic tape, and the computer would load
and run them as fast as hardware allowed

This was called spooling, the first instance of addressing the
disparity between human and computer speeds



History

The issue was to keep the big and expensive computer as busy
as possible, running programs all the time

Idle time was a waste of money

So the operators would load many programs on to a fast
medium, such as magnetic tape, and the computer would load
and run them as fast as hardware allowed

This was called spooling, the first instance of addressing the
disparity between human and computer speeds



History

The issue was to keep the big and expensive computer as busy
as possible, running programs all the time

Idle time was a waste of money

So the operators would load many programs on to a fast
medium, such as magnetic tape, and the computer would load
and run them as fast as hardware allowed

This was called spooling, the first instance of addressing the
disparity between human and computer speeds



History

Spooling would also be used on output: the output would be
written to a mag tape, which could then later be attached to a
printer

Again, this was because printers are slower than computers



History

Spooling would also be used on output: the output would be
written to a mag tape, which could then later be attached to a
printer

Again, this was because printers are slower than computers



History

Of course, this was soon automated: have a little program,
called a monitor (or supervisor ), that loads programs from
tape; runs them; and puts the results on tape

This would be directed by a job control language



History

Of course, this was soon automated: have a little program,
called a monitor (or supervisor ), that loads programs from
tape; runs them; and puts the results on tape

This would be directed by a job control language



History

A famous job control language from IBM was called JCL

Of course “JCL” means “Job Control Language”, but JCL was
just one of a few job control languages



History

A famous job control language from IBM was called JCL

Of course “JCL” means “Job Control Language”, but JCL was
just one of a few job control languages



History

//IS198CPY JOB (IS198T30500),’COPY JOB’,CLASS=L,MSGCLASS=X

//COPY01 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=OLDFILE,DISP=SHR

//SYSUT2 DD DSN=NEWFILE,

// DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(40,5),RLSE),

// DCB=(LRECL=115,BLKSIZE=1150)

//SYSIN DD DUMMY

(From Wikipedia) Any guesses?

This copies OLDFILE to NEWFILE
This would be set on 9 punched cards



History

//IS198CPY JOB (IS198T30500),’COPY JOB’,CLASS=L,MSGCLASS=X

//COPY01 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=OLDFILE,DISP=SHR

//SYSUT2 DD DSN=NEWFILE,

// DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(40,5),RLSE),

// DCB=(LRECL=115,BLKSIZE=1150)

//SYSIN DD DUMMY

(From Wikipedia) Any guesses?

This copies OLDFILE to NEWFILE

This would be set on 9 punched cards



History

//IS198CPY JOB (IS198T30500),’COPY JOB’,CLASS=L,MSGCLASS=X

//COPY01 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=OLDFILE,DISP=SHR

//SYSUT2 DD DSN=NEWFILE,

// DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(40,5),RLSE),

// DCB=(LRECL=115,BLKSIZE=1150)

//SYSIN DD DUMMY

(From Wikipedia) Any guesses?

This copies OLDFILE to NEWFILE
This would be set on 9 punched cards



History
A Fortran program, with data:

//CONVERT JOB USER=UGA001,MSGCLASS=6,NOTIFY=UGA001

//*MAIN CLASS=NITE,LINES=40,ORG=UGAIBM1.LOCAL

// EXEC FORTVCLG,REGION=2000K

//FORT.SYSIN DD *

READ(5,10) CENT

10 FORMAT(F6.2)

FAHR=(CENT*9.0/5.0)+32.0

WRITE(6,20) CENT,FAHR

20 FORMAT(F6.2,’ CENT = ’,F6,2,’FAHR’)

STOP

END

/*

//GO.SYSIN DD *

100.00

/*

//



History

JCL allowed several programs to be collected and loaded
together in a single bunch

This is called batch processing

Running in batches is more efficient, as we spend more time
running our programs and less time messing around in the
overheads of loading and unloading



History

JCL allowed several programs to be collected and loaded
together in a single bunch

This is called batch processing

Running in batches is more efficient, as we spend more time
running our programs and less time messing around in the
overheads of loading and unloading



History

JCL allowed several programs to be collected and loaded
together in a single bunch

This is called batch processing

Running in batches is more efficient, as we spend more time
running our programs and less time messing around in the
overheads of loading and unloading



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

So the monitor was just a program there to help manage the
machine

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so the monitor could deal with the next
program



History

So the monitor was just a program there to help manage the
machine

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so the monitor could deal with the next
program



History

So the monitor was just a program there to help manage the
machine

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so the monitor could deal with the next
program



History

So the monitor was just a program there to help manage the
machine

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so the monitor could deal with the next
program



History

But if the application was badly written, it could overwrite the
monitor

Monitor User program

Machine memory

Either accidentally or deliberately

They needed to do something about this

But there are other problems, too



History

But if the application was badly written, it could overwrite the
monitor

Monitor User program

Machine memory

Either accidentally or deliberately

They needed to do something about this

But there are other problems, too



History

But if the application was badly written, it could overwrite the
monitor

Monitor User program

Machine memory

Either accidentally or deliberately

They needed to do something about this

But there are other problems, too



History

But if the application was badly written, it could overwrite the
monitor

Monitor User program

Machine memory

Either accidentally or deliberately

They needed to do something about this

But there are other problems, too



History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor



History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor



History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor



History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

So the “monitor runs the programs”: what does this really
mean?

Nothing sophisticated. The monitor code just jumps to the
program code so the machine is now running the program

Take care over this point: the monitor doesn’t sit and watch the
program running, the monitor is not running while the program
is running



History

So the “monitor runs the programs”: what does this really
mean?

Nothing sophisticated. The monitor code just jumps to the
program code so the machine is now running the program

Take care over this point: the monitor doesn’t sit and watch the
program running, the monitor is not running while the program
is running



History

So the “monitor runs the programs”: what does this really
mean?

Nothing sophisticated. The monitor code just jumps to the
program code so the machine is now running the program

Take care over this point: the monitor doesn’t sit and watch the
program running, the monitor is not running while the program
is running



History

Monitor

Monitor program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor runs



History

Monitor

Monitor

program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor jumps to program 1



History

Monitor

Monitor program 1

program 1 program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Program runs



History

Monitor

Monitor program 1

program 1 program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Tape needed



History

Monitor

Monitor

program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Program calls monitor



History

Monitor

Monitor program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor sets up tape



History

Monitor

Monitor program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor decides to run another program while waiting for the tape



History

Monitor

Monitor

program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor jumps to program 2



History

Monitor

Monitor

program 1

program 1 program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Program 2 runs



History

Monitor

Monitor

program 1

program 1 program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Etc.



History

There is a single stream of control jumping between monitor
and one or more programs

The monitor is not running when a user program is running, and
the user program is not running while the monitor is running



History

There is a single stream of control jumping between monitor
and one or more programs

The monitor is not running when a user program is running, and
the user program is not running while the monitor is running



History

This changing between multiple user programs is called
multitasking. But only one thing is ever running

Multitasking improves the efficiency of use of a computer since
while one program waits for a slow peripheral another program
can run



History

This changing between multiple user programs is called
multitasking. But only one thing is ever running

Multitasking improves the efficiency of use of a computer since
while one program waits for a slow peripheral another program
can run



History

So the monitor now needs to keep making decisions on which
program to run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things



History

So the monitor now needs to keep making decisions on which
program to run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things



History

So the monitor now needs to keep making decisions on which
program to run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running

• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things



History

So the monitor now needs to keep making decisions on which
program to run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program

• whether a program is likely to need CPU very soon, or can
wait

• how much the owner of the program has paid
• And many more things



History

So the monitor now needs to keep making decisions on which
program to run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait

• how much the owner of the program has paid
• And many more things



History

So the monitor now needs to keep making decisions on which
program to run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid

• And many more things



History

So the monitor now needs to keep making decisions on which
program to run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later


