
History

We are now going to look at some history: this is useful as it
will illustrate the many important parts of OSs and why they are
necessary

At first, computers had no operating systems (1960s)

• Every programmer had to write their programs for the
particular machine they were using

• So no portability
• And lots of repeated code between programs (“write a

character to the teletype”)

Remember: the more we make programmers do, the more
likely they are going to make a mistake
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Furthermore, programmers rarely even saw the computer

• The program and the data is needed (collectively called a
job) would be prepared on paper tape or punched card

• Jobs would be given to operators who would load and run
them, collect the results and then send the results back to
the programmer

• Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

• As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

• Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!
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It was soon found there was a lot of repeated code between
programs, so useful tools (programs and libraries of code) were
developed to help manage repetitive tasks

• collecting common functions in system libraries (sqrt, open
file, etc.)

• program management (loaders)
• debuggers
• Interfacing to hardware: I/O drivers (send file to printer,

etc.)

This made programming and program management easier, but
there was still lots of human intervention needed
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The issue was to keep the big and expensive computer as busy
as possible, running programs all the time

Idle time was a waste of money

So the operators would load many programs on to a fast
medium, such as magnetic tape, and the computer would load
and run them as fast as hardware allowed

This was called spooling, the first instance of addressing the
disparity between human and computer speeds
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//IS198CPY JOB (IS198T30500),’COPY JOB’,CLASS=L,MSGCLASS=X

//COPY01 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=OLDFILE,DISP=SHR

//SYSUT2 DD DSN=NEWFILE,

// DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(40,5),RLSE),

// DCB=(LRECL=115,BLKSIZE=1150)

//SYSIN DD DUMMY

(From Wikipedia) Any guesses?

This copies OLDFILE to NEWFILE
This would be set on 9 punched cards
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A Fortran program, with data:

//CONVERT JOB USER=UGA001,MSGCLASS=6,NOTIFY=UGA001

//*MAIN CLASS=NITE,LINES=40,ORG=UGAIBM1.LOCAL

// EXEC FORTVCLG,REGION=2000K

//FORT.SYSIN DD *

READ(5,10) CENT

10 FORMAT(F6.2)

FAHR=(CENT*9.0/5.0)+32.0

WRITE(6,20) CENT,FAHR

20 FORMAT(F6.2,’ CENT = ’,F6,2,’FAHR’)

STOP

END

/*

//GO.SYSIN DD *

100.00

/*

//
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JCL allowed several programs to be collected and loaded
together in a single bunch

This is called batch processing

Running in batches is more efficient, as we spend more time
running our programs and less time messing around in the
overheads of loading and unloading
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This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

This might seem like ancient history, but these things are still
happening

Modern large computers are managed in just this way: and for
the same reasons

We still run jobs and need to manage CPU usage and disk
usage

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise look up Portable Batch System, PBS and compare
with JCL



History

So the monitor was just a program there to help manage the
machine

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so the monitor could deal with the next
program
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It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor
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Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed
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So the “monitor runs the programs”: what does this really
mean?

Nothing sophisticated. The monitor code just jumps to the
program code so the machine is now running the program

Take care over this point: the monitor doesn’t sit and watch the
program running, the monitor is not running while the program
is running
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This changing between multiple user programs is called
multitasking. But only one thing is ever running

Multitasking improves the efficiency of use of a computer since
while one program waits for a slow peripheral another program
can run
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So the monitor now needs to keep making decisions on which
program to run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things
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Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later
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