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to the OS and so it can decide what to do next, including:

• resume running the interrupted program
• kill (no longer run and remove resources from) the program

if it has used up its allotted resources (e.g., CPU time)
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CPU time and so appear to be running simultaneously (to the
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And usually in a fairly transparent manner to the programs
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The same interrupt mechanism allowed the use of terminals,
where users could now interact directly with the computer, not
just via job submission

A program can sit and wait (i.e., not be scheduled to run by the
OS) until the user hits a key on the terminal

When a key is hit, an interrupt happens, the OS takes over,
schedules and runs the appropriate program to deal with the
keystroke
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Of course, while we say “the program is waiting”, it is important
to realised that it’s not “waiting”: the program is not even
running

So interrupts like this are another way of bridging the gap
between slow humans and fast computers

My PC is running at about 150 interrupts per second (timers
and other stuff)



History

Thus the waiting program uses no CPU resources until they are
needed

Of course, while we say “the program is waiting”, it is important
to realised that it’s not “waiting”: the program is not even
running

So interrupts like this are another way of bridging the gap
between slow humans and fast computers

My PC is running at about 150 interrupts per second (timers
and other stuff)



History

Thus the waiting program uses no CPU resources until they are
needed

Of course, while we say “the program is waiting”, it is important
to realised that it’s not “waiting”: the program is not even
running

So interrupts like this are another way of bridging the gap
between slow humans and fast computers

My PC is running at about 150 interrupts per second (timers
and other stuff)



History

Thus the waiting program uses no CPU resources until they are
needed

Of course, while we say “the program is waiting”, it is important
to realised that it’s not “waiting”: the program is not even
running

So interrupts like this are another way of bridging the gap
between slow humans and fast computers

My PC is running at about 150 interrupts per second (timers
and other stuff)



History

The OS probably won’t choose a different program to run on
every interrupt

It will make decisions (see later) based on what the various
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A compute-intensive program might get a large slice of time

This means the OS will continue to schedule the same program
over many timer interrupts
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An interactive program — one that spends most of its life
waiting for a user to do something — doesn’t need much CPU,
so the OS would only give it a small slice of time

Meaning it will deschedule the program after a few (possibly
just one) timer interrupt

We shall return to scheduling later
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and unobtrusive: every memory access needs to be checked

So it has to be hardware supported and not just software

We shall start by looking at general hardware protection
mechanisms
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Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

• Unprivileged operations. Like arithmetic operations, loads,
stores, jumps and so on. Any program can execute these

• Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these
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Modern processor architectures can have more levels of
privilege, but for the most part it is rare that more than two
levels are used in commodity computers

For example, the Intel x86 architecture has four rings. Ring 0
can execute any instruction, while Ring 3 is for user mode.
Rings 1 and 2 are rarely used these days

OS/2 used Ring 2

The latest Intel and AMD architectures added a Ring −1 (for
OS virtualisation)
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Exercise And it doesn’t stop there. Read about rings −2 and
−3

Exercise The ARM architecture has 3 levels. Read about this
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Note that privilege is a state of the processor, not the program,
but we tend to say “a privileged program” rather than “a
program running with the CPU in privileged mode”

If an unprivileged program (i.e., a program running in an
unprivileged mode) tries to execute a privileged operation the
hardware causes an interrupt (also called a system trap) and
sets the processor to privileged mode. The interrupt service
routine then jumps to the OS

The OS is now running (in privileged mode) and can then
decide what to do

For example, the OS may decide to disallow the operation, and
kill the program (i.e., not run it any more)
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The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program
3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource
5. The program executes a special “call OS” (or syscall)

instruction that jumps to the OS
6. This enables privileged mode, so the OS regains control,

with privilege
7. The OS decides what to do next
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Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway

The syscall instruction always jumps to the same place in the
OS. So the program cannot use it to gain privilege for itself and
run its own code privileged

This to-ing and fro-ing between modes ensures that the OS is
running in privileged mode and the user program is running in
unprivileged mode

And the user program can never manage to get into privileged
mode as every transition to privileged mode is tied by the
hardware to a jump to the OS
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Hardware

OS Kernel/Privileged mode

System libraries

GUI User/Unprivileged mode

Applications

There is a strict divide between kernel (OS) code and user
code, controlled by the hardware
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Unless there are bugs in the kernel code

Or you don’t maintain the proper separation between OS and
everything else: revisit the diagrams from earlier

Incidentally, the system libraries usually include a bunch of
“nice” interfaces to the syscalls: wrapping them to make using
them easier

E.g., the “open file” syscall might need certain values (file
name, etc.) to be placed in certain CPU registers; and the
“open file” code to be placed in a register before the syscall

The open system library function simply hides these details
from the programmer
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The result of all this messing with modes is certain operations
like loading programs, or accessing hardware like a printer, are
only available to the OS

If an unprivileged program tries to access the printer directly,
that again trips an interrupt and the OS takes over anyway

Forcing access to hardware via the OS also provides protection
and management for other system resources, like access to
files or the network

In kernel mode, everything is possible

In user mode, only “safe” things are possible
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Preemption and protection appeared in OSs for large
mainframe computers and Unix for minicomputers in the late
1960s

When microcomputers (IBM PC) arrived in the early 1980s
much of OS knowledge was thrown away and DOS (Disk
Operating System) was non-preemptive, single process and no
protection

This was because the earliest PC hardware did not support
such things (no rings)
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Support was rapidly added in later PC hardware, but DOS and,
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for PCs, possibly as much as a decade after other OSs (such
as Unix derivatives) were providing preemption and protection
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Incidentally, Microsoft’s need for backwards compatability with
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Back to memory protection: this must stop a program from
writing and/or reading the memory used by another program or
by the OS

The OS must be allowed to read and write any part of memory

Again, there must be hardware support to do this to make it fast

There is a table of flags in a special piece of hardware: the
memory management unit (MMU). These flags say whether the
currently running (user mode) program can read or write a
given area of memory
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Setting these flags in the MMU is a privileged operation, of
course

And if an unprivileged program tries to read or write to an area
of memory for which it does not have the required permission
(say some other program’s or the OS’s memory) the MMU
raises an interrupt and the OS takes control again

It would not be feasible to have control like this on a
byte-by-byte level, so memory is divided into blocks called
pages

A page is just a contiguous area of memory: 4096 bytes is
popular on modern machines, though current hardware can
support 4MB pages



History

Setting these flags in the MMU is a privileged operation, of
course

And if an unprivileged program tries to read or write to an area
of memory for which it does not have the required permission
(say some other program’s or the OS’s memory) the MMU
raises an interrupt and the OS takes control again

It would not be feasible to have control like this on a
byte-by-byte level, so memory is divided into blocks called
pages

A page is just a contiguous area of memory: 4096 bytes is
popular on modern machines, though current hardware can
support 4MB pages



History

Setting these flags in the MMU is a privileged operation, of
course

And if an unprivileged program tries to read or write to an area
of memory for which it does not have the required permission
(say some other program’s or the OS’s memory) the MMU
raises an interrupt and the OS takes control again

It would not be feasible to have control like this on a
byte-by-byte level, so memory is divided into blocks called
pages

A page is just a contiguous area of memory: 4096 bytes is
popular on modern machines, though current hardware can
support 4MB pages



History

Setting these flags in the MMU is a privileged operation, of
course

And if an unprivileged program tries to read or write to an area
of memory for which it does not have the required permission
(say some other program’s or the OS’s memory) the MMU
raises an interrupt and the OS takes control again

It would not be feasible to have control like this on a
byte-by-byte level, so memory is divided into blocks called
pages

A page is just a contiguous area of memory: 4096 bytes is
popular on modern machines, though current hardware can
support 4MB pages



History

A page is marked as read/writable as a whole: this makes this
technique practical

Exercise How many flags (bits) are needed to cover 2GB? How
many bytes of flags does that correspond to?

Note that there is a set of flags for each program, and are part
of the program’s state that must be saved and restored when
that program is re-scheduled

There is usually also an executable flag: can you execute code
from this memory address?
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Every read or write to memory is checked by the MMU before it
is allowed: this means the hardware that does this check has to
be very fast

We shall not be going into this in depth here, because in
modern machines this is enhanced by the notion of virtual
memory

This we shall cover later, but it builds on the ideas above and
provides a much more flexible method of protection
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memory are accessible for the current program

And every memory access is checked

An interrupt is raised if the program tries to read or write
memory that is not allocated to it
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So what is the current state of OSs with regard to preemption
and memory protection?

In current large OSs we have:

• Windows. Preemptive multitasking from Windows NT
(1996) onwards. Previously (Windows 95 etc.) was little
more than a monitor with a pretty interface on top

• Linux. A Unix re-implementation. Preemptive multitasking
from inception (1991). (Recall that Unix had preemption
from early 1970s)

• MacOS. MacOS X is a Unix derivative (BSD), from 1999
onwards. Earlier systems (MacOS 9 and earlier) were
completely different, with no preemption, only cooperative
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• Solaris. A Unix derivative (System V). Preemptive
multitasking from inception (1992), an extensive rewrite of
the earlier SunOS (1983), another Unix variant (BSD)

• OS/2. Initially from Microsoft and IBM (1997), then just IBM
as Microsoft went off to do its own thing. Intended to be the
followup to DOS. Multitasking when the hardware could
support it: OS/2 2.0 (1992) could run multiple copies of
DOS/Windows simultaneously. Previously used a lot in
bank ATMs (until IBM ended support in 2006). OS/2 3.0
became Windows NT
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And thousands of others: but the major players in the PC
market are either derived from Windows NT, or from Unix

In contrast, in the embedded market are things are much more
mixed, with both preemptive and cooperative OSs, as required
by the application

All PC-level OSs have MMU protection (and more); while
embedded systems have it if required, otherwise not (so not to
have the cost of the MMU hardware)
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