
Processes

We now look at the programs we want to run

The word process is used to describe

• the executable code and
• its data and
• the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes

We now look at the programs we want to run

The word process is used to describe

• the executable code and
• its data and
• the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes

We now look at the programs we want to run

The word process is used to describe

• the executable code and
• its data and
• the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes

We now look at the programs we want to run

The word process is used to describe

• the executable code and
• its data and
• the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is

• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is

• what permissions it has on those parts of memory (MMU
flags)

• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)

• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated

• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used

• similarly for other shared resources, e.g., the amount of I/O
or networking done

• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done

• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers

• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but not currently running as some

other process is currently using the CPU
4. Blocked. Can’t run right now as it is waiting for some event

or resource to become available. E.g., waiting for a block of
data to arrive from the disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created

2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but not currently running as some

other process is currently using the CPU
4. Blocked. Can’t run right now as it is waiting for some event

or resource to become available. E.g., waiting for a block of
data to arrive from the disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU

3. Ready. It is ready to run, but not currently running as some
other process is currently using the CPU

4. Blocked. Can’t run right now as it is waiting for some event
or resource to become available. E.g., waiting for a block of
data to arrive from the disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but not currently running as some

other process is currently using the CPU

4. Blocked. Can’t run right now as it is waiting for some event
or resource to become available. E.g., waiting for a block of
data to arrive from the disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but not currently running as some

other process is currently using the CPU
4. Blocked. Can’t run right now as it is waiting for some event

or resource to become available. E.g., waiting for a block of
data to arrive from the disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but not currently running as some

other process is currently using the CPU
4. Blocked. Can’t run right now as it is waiting for some event

or resource to become available. E.g., waiting for a block of
data to arrive from the disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but not currently running as some

other process is currently using the CPU
4. Blocked. Can’t run right now as it is waiting for some event

or resource to become available. E.g., waiting for a block of
data to arrive from the disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

We shall assume, for simplicity, that we have just one processor

The OS will have sets of processes in each state, so the
scheduling decision is making the choice of which process to
move between which states

In real OSs, these sets will will not be simple lists. They might
be arranged in priority order, or might be some more
sophisticated datastructure: e.g., a pair of lists, one for
real-time processes and the other for non-real-time; or a tree

Processes

We shall assume, for simplicity, that we have just one processor

The OS will have sets of processes in each state, so the
scheduling decision is making the choice of which process to
move between which states

In real OSs, these sets will will not be simple lists. They might
be arranged in priority order, or might be some more
sophisticated datastructure: e.g., a pair of lists, one for
real-time processes and the other for non-real-time; or a tree

Processes

We shall assume, for simplicity, that we have just one processor

The OS will have sets of processes in each state, so the
scheduling decision is making the choice of which process to
move between which states

In real OSs, these sets will will not be simple lists. They might
be arranged in priority order, or might be some more
sophisticated datastructure: e.g., a pair of lists, one for
real-time processes and the other for non-real-time; or a tree

Processes
Example: in Unixes, processes are arranged in trees

systemd-+-ModemManager---2*[{ModemManager}]

|-NetworkManager---2*[{NetworkManager}]

|-Thunar---3*[{Thunar}]

|-accounts-daemon---2*[{accounts-daemon}]

|-agetty

|-atd

|-auditd---{auditd}

|-avahi-daemon

|-chrome-+-2*[cat]

| |-chrome-+-chrome-+-chrome---12*[{chrome}]

| | | |-chrome---19*[{chrome}]

| | | |-3*[chrome---11*[{chrome}]]

| | | |-chrome---15*[{chrome}]

| | | |-chrome---17*[{chrome}]

| | | |-chrome---16*[{chrome}]

| | | |-chrome---10*[{chrome}]

| | | ‘-chrome---23*[{chrome}]

| | ‘-nacl_helper

| |-chrome-+-chrome

| | ‘-7*[{chrome}]

Processes

Trees allow easy manipulation of whole bunches of (usually
related) processes in a simple way

Processes

So we have these five main states: New, Ready, Running,
Blocked and Exit, and a process will be moved by the OS
between them

A new process will begin in the state New

A process just finished will be in the state Exit

In between the OS must decide, as part of its scheduling,
where to place each process

There is a standard finite state machine that describes the
allowed transitions between states

Processes

So we have these five main states: New, Ready, Running,
Blocked and Exit, and a process will be moved by the OS
between them

A new process will begin in the state New

A process just finished will be in the state Exit

In between the OS must decide, as part of its scheduling,
where to place each process

There is a standard finite state machine that describes the
allowed transitions between states

Processes

So we have these five main states: New, Ready, Running,
Blocked and Exit, and a process will be moved by the OS
between them

A new process will begin in the state New

A process just finished will be in the state Exit

In between the OS must decide, as part of its scheduling,
where to place each process

There is a standard finite state machine that describes the
allowed transitions between states

Processes

So we have these five main states: New, Ready, Running,
Blocked and Exit, and a process will be moved by the OS
between them

A new process will begin in the state New

A process just finished will be in the state Exit

In between the OS must decide, as part of its scheduling,
where to place each process

There is a standard finite state machine that describes the
allowed transitions between states

Processes

So we have these five main states: New, Ready, Running,
Blocked and Exit, and a process will be moved by the OS
between them

A new process will begin in the state New

A process just finished will be in the state Exit

In between the OS must decide, as part of its scheduling,
where to place each process

There is a standard finite state machine that describes the
allowed transitions between states

Processes

Running

Blocked

Wakeup

Ready

New Exit
Release

Dispatch Interrupt or

relinquish

Admit
Block or

sleep

Process State Transitions

Processes

A typical transition is

1. The OS decides to schedule a process on the ready list
2. The process is dispatched, i.e., the OS marks its state as

running and starts executing it (jump and drop privilege)
3. The process may choose to voluntarily suspend itself:

relinquish (e.g., a clock program displaying the time might
suspend itself for a minute)

4. Or an interrupt may arise, e.g., from a packet arriving on
the network card, or a key being hit on the keyboard

5. Or a timer interrupt may arise. In any of these three cases
the OS moves the process to the Ready state

Processes

A typical transition is

1. The OS decides to schedule a process on the ready list

2. The process is dispatched, i.e., the OS marks its state as
running and starts executing it (jump and drop privilege)

3. The process may choose to voluntarily suspend itself:
relinquish (e.g., a clock program displaying the time might
suspend itself for a minute)

4. Or an interrupt may arise, e.g., from a packet arriving on
the network card, or a key being hit on the keyboard

5. Or a timer interrupt may arise. In any of these three cases
the OS moves the process to the Ready state

Processes

A typical transition is

1. The OS decides to schedule a process on the ready list
2. The process is dispatched, i.e., the OS marks its state as

running and starts executing it (jump and drop privilege)

3. The process may choose to voluntarily suspend itself:
relinquish (e.g., a clock program displaying the time might
suspend itself for a minute)

4. Or an interrupt may arise, e.g., from a packet arriving on
the network card, or a key being hit on the keyboard

5. Or a timer interrupt may arise. In any of these three cases
the OS moves the process to the Ready state

Processes

A typical transition is

1. The OS decides to schedule a process on the ready list
2. The process is dispatched, i.e., the OS marks its state as

running and starts executing it (jump and drop privilege)
3. The process may choose to voluntarily suspend itself:

relinquish (e.g., a clock program displaying the time might
suspend itself for a minute)

4. Or an interrupt may arise, e.g., from a packet arriving on
the network card, or a key being hit on the keyboard

5. Or a timer interrupt may arise. In any of these three cases
the OS moves the process to the Ready state

Processes

A typical transition is

1. The OS decides to schedule a process on the ready list
2. The process is dispatched, i.e., the OS marks its state as

running and starts executing it (jump and drop privilege)
3. The process may choose to voluntarily suspend itself:

relinquish (e.g., a clock program displaying the time might
suspend itself for a minute)

4. Or an interrupt may arise, e.g., from a packet arriving on
the network card, or a key being hit on the keyboard

5. Or a timer interrupt may arise. In any of these three cases
the OS moves the process to the Ready state

Processes

A typical transition is

1. The OS decides to schedule a process on the ready list
2. The process is dispatched, i.e., the OS marks its state as

running and starts executing it (jump and drop privilege)
3. The process may choose to voluntarily suspend itself:

relinquish (e.g., a clock program displaying the time might
suspend itself for a minute)

4. Or an interrupt may arise, e.g., from a packet arriving on
the network card, or a key being hit on the keyboard

5. Or a timer interrupt may arise. In any of these three cases
the OS moves the process to the Ready state

Processes

6. Or the running process may need some resource the OS
must supply (e.g., for disk access) so it does a syscall and
must wait until the resource is ready (e.g., the disk returns
some data); the OS moves it to Blocked

7. In the case of a blocked process, perhaps data has
returned from the disk and the process can wake up and
become Ready again. Note that the process won’t
necessarily start running immediately, it is just ready to run
when it gets its chance

And to make it clear: it’s not the processes moving themselves
between the states, it’s the OS moving them between the sets
of processes in each state

Processes

6. Or the running process may need some resource the OS
must supply (e.g., for disk access) so it does a syscall and
must wait until the resource is ready (e.g., the disk returns
some data); the OS moves it to Blocked

7. In the case of a blocked process, perhaps data has
returned from the disk and the process can wake up and
become Ready again. Note that the process won’t
necessarily start running immediately, it is just ready to run
when it gets its chance

And to make it clear: it’s not the processes moving themselves
between the states, it’s the OS moving them between the sets
of processes in each state

Processes

6. Or the running process may need some resource the OS
must supply (e.g., for disk access) so it does a syscall and
must wait until the resource is ready (e.g., the disk returns
some data); the OS moves it to Blocked

7. In the case of a blocked process, perhaps data has
returned from the disk and the process can wake up and
become Ready again. Note that the process won’t
necessarily start running immediately, it is just ready to run
when it gets its chance

And to make it clear: it’s not the processes moving themselves
between the states, it’s the OS moving them between the sets
of processes in each state

Processes

Remember, early OSs without timer interrupts had to rely on
processes relinquishing control every once in a while:
cooperative multitasking

Even though we can now have preemptive multitasking,
processes may wish to relinquish voluntarily

Exercise Write a program that voluntarily relinquishes
occasionally

Processes

Remember, early OSs without timer interrupts had to rely on
processes relinquishing control every once in a while:
cooperative multitasking

Even though we can now have preemptive multitasking,
processes may wish to relinquish voluntarily

Exercise Write a program that voluntarily relinquishes
occasionally

Processes

Remember, early OSs without timer interrupts had to rely on
processes relinquishing control every once in a while:
cooperative multitasking

Even though we can now have preemptive multitasking,
processes may wish to relinquish voluntarily

Exercise Write a program that voluntarily relinquishes
occasionally

Processes

New and Exit states happen just once per process

• New. For a process just created, perhaps code and data
are not yet loaded into memory. The OS datastructures
needed to manage the process must be created and filled
in

• Exit. For a process that has just finished. Some tidying up
is usually needed after a process ends, such as closing
files or reclaiming memory or other resources it used

Processes

New and Exit states happen just once per process

• New. For a process just created, perhaps code and data
are not yet loaded into memory. The OS datastructures
needed to manage the process must be created and filled
in

• Exit. For a process that has just finished. Some tidying up
is usually needed after a process ends, such as closing
files or reclaiming memory or other resources it used

Processes

New and Exit states happen just once per process

• New. For a process just created, perhaps code and data
are not yet loaded into memory. The OS datastructures
needed to manage the process must be created and filled
in

• Exit. For a process that has just finished. Some tidying up
is usually needed after a process ends, such as closing
files or reclaiming memory or other resources it used

Processes

A real example:

USER PID PPID PRI %CPU %MEM STAT TIME COMMAND

rjb 3974 4831 22 0.0 0.1 R+ 00:00:00 ps

rjb 4495 4831 24 0.0 2.0 S 00:01:11 emacs

rjb 4538 4530 23 0.0 0.2 Ss+ 00:00:00 bash

rjb 4540 4534 24 0.0 0.2 Ss 00:00:00 bash

rjb 4664 4556 21 0.0 0.6 S+ 00:00:08 pine

rjb 4831 4829 24 0.0 0.2 Ss+ 00:00:00 bash

rjb 7839 4831 15 0.0 0.1 Ss 00:00:00 firefox

rjb 7851 7839 14 0.0 0.1 S 00:00:00 run-mozilla.sh

rjb 7856 7851 24 0.2 16.6 Sl 00:31:47 firefox-bin

rjb 14880 1 16 0.0 3.1 Dsl 00:06:43 recollindex

Example processes under Linux

Processes

• S. Sleeping: like blocked (interruptible sleep; waiting for an
event like a timer or other interrupt)

• D. Disk wait (uninterruptible sleep; waiting for requested
I/O)

• R. Running or ready to run
• It is hard to catch new and exiting processes

(s: session leader; +: foreground process group; l:
multithreaded)

Processes

Other columns of interest

• User. The user who owns the process
• PRI. Priority. In Linux, priorities are integers, larger

indicates less important
• PID. Process identifier. An integer that uniquely identifies

this process
• PPID. Parent PID. The PID of the process that started this

process. This allows processes to be grouped in trees.
Process number 1 is the parent of all processes

• CPU, MEM, TIME. How much of these resources this
process is using

Processes

Other columns of interest

• User. The user who owns the process

• PRI. Priority. In Linux, priorities are integers, larger
indicates less important

• PID. Process identifier. An integer that uniquely identifies
this process

• PPID. Parent PID. The PID of the process that started this
process. This allows processes to be grouped in trees.
Process number 1 is the parent of all processes

• CPU, MEM, TIME. How much of these resources this
process is using

Processes

Other columns of interest

• User. The user who owns the process
• PRI. Priority. In Linux, priorities are integers, larger

indicates less important

• PID. Process identifier. An integer that uniquely identifies
this process

• PPID. Parent PID. The PID of the process that started this
process. This allows processes to be grouped in trees.
Process number 1 is the parent of all processes

• CPU, MEM, TIME. How much of these resources this
process is using

Processes

Other columns of interest

• User. The user who owns the process
• PRI. Priority. In Linux, priorities are integers, larger

indicates less important
• PID. Process identifier. An integer that uniquely identifies

this process

• PPID. Parent PID. The PID of the process that started this
process. This allows processes to be grouped in trees.
Process number 1 is the parent of all processes

• CPU, MEM, TIME. How much of these resources this
process is using

Processes

Other columns of interest

• User. The user who owns the process
• PRI. Priority. In Linux, priorities are integers, larger

indicates less important
• PID. Process identifier. An integer that uniquely identifies

this process
• PPID. Parent PID. The PID of the process that started this

process. This allows processes to be grouped in trees.
Process number 1 is the parent of all processes

• CPU, MEM, TIME. How much of these resources this
process is using

Processes

Other columns of interest

• User. The user who owns the process
• PRI. Priority. In Linux, priorities are integers, larger

indicates less important
• PID. Process identifier. An integer that uniquely identifies

this process
• PPID. Parent PID. The PID of the process that started this

process. This allows processes to be grouped in trees.
Process number 1 is the parent of all processes

• CPU, MEM, TIME. How much of these resources this
process is using

Processes

So we can see some more of the information that a process
needs to collect and maintain:

• User identifiers (userids)
• A priority
• Statistics like memory and CPU used
• The scheduling state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB

Processes

So we can see some more of the information that a process
needs to collect and maintain:

• User identifiers (userids)

• A priority
• Statistics like memory and CPU used
• The scheduling state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB

Processes

So we can see some more of the information that a process
needs to collect and maintain:

• User identifiers (userids)
• A priority

• Statistics like memory and CPU used
• The scheduling state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB

Processes

So we can see some more of the information that a process
needs to collect and maintain:

• User identifiers (userids)
• A priority
• Statistics like memory and CPU used

• The scheduling state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB

Processes

So we can see some more of the information that a process
needs to collect and maintain:

• User identifiers (userids)
• A priority
• Statistics like memory and CPU used
• The scheduling state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB

Processes

So we can see some more of the information that a process
needs to collect and maintain:

• User identifiers (userids)
• A priority
• Statistics like memory and CPU used
• The scheduling state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB

Processes

So we can see some more of the information that a process
needs to collect and maintain:

• User identifiers (userids)
• A priority
• Statistics like memory and CPU used
• The scheduling state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB

Processes

To pause and restart a process (e.g., on an interrupt) requires
the saving and restoring of all the running process’ state: CPU
registers, stack pointers, MMU flags, etc.

This will also be stored in the PCB

And will be retrieved from the PCB when the process next gets
scheduled to run

Processes

To pause and restart a process (e.g., on an interrupt) requires
the saving and restoring of all the running process’ state: CPU
registers, stack pointers, MMU flags, etc.

This will also be stored in the PCB

And will be retrieved from the PCB when the process next gets
scheduled to run

Processes

To pause and restart a process (e.g., on an interrupt) requires
the saving and restoring of all the running process’ state: CPU
registers, stack pointers, MMU flags, etc.

This will also be stored in the PCB

And will be retrieved from the PCB when the process next gets
scheduled to run

Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant kernel list of PCBs

This is what happens in the New state; it can now be moved to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes

Process creation is quite involved

• Allocate and create PCB structure

• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant kernel list of PCBs

This is what happens in the New state; it can now be moved to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID

• Determine and allocate the necessary resources (in
particular memory)

• Determine the initial priority of the process
• Insert PCB into the relevant kernel list of PCBs

This is what happens in the New state; it can now be moved to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)

• Determine the initial priority of the process
• Insert PCB into the relevant kernel list of PCBs

This is what happens in the New state; it can now be moved to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process

• Insert PCB into the relevant kernel list of PCBs

This is what happens in the New state; it can now be moved to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant kernel list of PCBs

This is what happens in the New state; it can now be moved to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant kernel list of PCBs

This is what happens in the New state; it can now be moved to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant kernel list of PCBs

This is what happens in the New state; it can now be moved to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes

Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes

Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled

Processes

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled

Processes

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled

Processes

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled

Processes

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled

Processes

Of course, the OS can choose not to create the new process if
some policy says not to, or there is not enough memory, or
some other reason

In that case, the originating process usually gets a message
back from the OS (via the value returned from the syscall)
explaining the problem

For example, “no permission to exec that program”

Processes

Of course, the OS can choose not to create the new process if
some policy says not to, or there is not enough memory, or
some other reason

In that case, the originating process usually gets a message
back from the OS (via the value returned from the syscall)
explaining the problem

For example, “no permission to exec that program”

Processes

Of course, the OS can choose not to create the new process if
some policy says not to, or there is not enough memory, or
some other reason

In that case, the originating process usually gets a message
back from the OS (via the value returned from the syscall)
explaining the problem

For example, “no permission to exec that program”

Processes

Exercise The question arises: if processes are created by
other processes, how do we get started? Read about the
bootstrapping problem

