
Scheduling

We now look at the question of how to choose which process to
run next out of all those in the Ready state

This is an extremely difficult problem and still has not been
solved to everybody’s satisfaction

So we only have a quick overview



Scheduling

We now look at the question of how to choose which process to
run next out of all those in the Ready state

This is an extremely difficult problem and still has not been
solved to everybody’s satisfaction

So we only have a quick overview



Scheduling

We now look at the question of how to choose which process to
run next out of all those in the Ready state

This is an extremely difficult problem and still has not been
solved to everybody’s satisfaction

So we only have a quick overview



Scheduling

A list of scheduling algorithms, from Wikipedia:

Borrowed-Virtual-Time Scheduling (BVT), Completely Fair Scheduler (CFS), Critical
Path Method of Scheduling, Deadline-monotonic scheduling (DMS), Deficit round robin
(DRR), Dominant Sequence Clustering (DSC), Earliest deadline first scheduling (EDF),
Elastic Round Robin, Fair-share scheduling, First In, First Out (FIFO), also known as
First Come First Served (FCFS), Gang scheduling, Genetic Anticipatory, Highest
response ratio next (HRRN), Interval scheduling, Last In, First Out (LIFO), Job Shop
Scheduling, Least-connection scheduling, Least slack time scheduling (LST), List
scheduling, Lottery Scheduling, Multilevel queue, Multilevel Feedback Queue, Never
queue scheduling, O(1) scheduler, Proportional Share Scheduling, Rate-monotonic
scheduling (RMS), Round-robin scheduling (RR), Shortest expected delay scheduling,
Shortest job next (SJN), Shortest remaining time (SRT), Staircase Deadline scheduler
(SD), “Take” Scheduling, Two-level scheduling, Weighted fair queuing (WFQ),
Weighted least-connection scheduling, Weighted round robin (WRR), Group Ratio
Round-Robin: O(1)



Scheduling

And they are just the ones people can be bothered to write
about on Wikipedia



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process
• Try to make interactive processes respond in human

timescales
• Try to give as much computation time as possible to

compute-heavy processes
• Ensuring critical real-time processes are dealt with before

it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time

• and no starvation of any process
• Try to make interactive processes respond in human

timescales
• Try to give as much computation time as possible to

compute-heavy processes
• Ensuring critical real-time processes are dealt with before

it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process

• Try to make interactive processes respond in human
timescales

• Try to give as much computation time as possible to
compute-heavy processes

• Ensuring critical real-time processes are dealt with before
it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process
• Try to make interactive processes respond in human

timescales

• Try to give as much computation time as possible to
compute-heavy processes

• Ensuring critical real-time processes are dealt with before
it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process
• Try to make interactive processes respond in human

timescales
• Try to give as much computation time as possible to

compute-heavy processes

• Ensuring critical real-time processes are dealt with before
it is too late



Scheduling

Think of the problems

• Try to give each process its fair share of CPU time
• and no starvation of any process
• Try to make interactive processes respond in human

timescales
• Try to give as much computation time as possible to

compute-heavy processes
• Ensuring critical real-time processes are dealt with before

it is too late



Scheduling

• Try to service peripherals in a timely way

• Understanding the various requirements of hardware: mice
and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs,
disks and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs,
disks and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs,
disks and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs,
disks and networks

• Try to make best use of the hardware and use it efficiently

• Try to make behaviour predictable: we don’t want wildly
erratic behaviour

• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs,
disks and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour

• Try to degrade gracefully under heavy load
• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs,
disks and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load

• And so on



Scheduling

• Try to service peripherals in a timely way
• Understanding the various requirements of hardware: mice

and printers are slow; networks and disks are medium;
memory is fast

• Try to distribute work amongst multiple devices; e.g, CPUs,
disks and networks

• Try to make best use of the hardware and use it efficiently
• Try to make behaviour predictable: we don’t want wildly

erratic behaviour
• Try to degrade gracefully under heavy load
• And so on



Scheduling

And do it all quickly!



Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!



Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!



Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!



Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used
• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used
• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used

• Memory used
• Disk used
• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used

• Disk used
• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used

• Network used
• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used
• Network used

• Etc.



Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

• CPU cycles used
• Memory used
• Disk used
• Network used
• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish
• Real-time; we must deal with this data now else the car will

crash (deadlines)
• Money; we’ve been given money to get this data ready in

the next hour
• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time

• Turnaround; response time: interactive response is snappy
or sluggish

• Real-time; we must deal with this data now else the car will
crash (deadlines)

• Money; we’ve been given money to get this data ready in
the next hour

• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish

• Real-time; we must deal with this data now else the car will
crash (deadlines)

• Money; we’ve been given money to get this data ready in
the next hour

• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish
• Real-time; we must deal with this data now else the car will

crash (deadlines)

• Money; we’ve been given money to get this data ready in
the next hour

• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish
• Real-time; we must deal with this data now else the car will

crash (deadlines)
• Money; we’ve been given money to get this data ready in

the next hour

• Etc.



Scheduling

And we can quantify results

• Throughput; more or fewer jobs finished in a given time
• Turnaround; response time: interactive response is snappy

or sluggish
• Real-time; we must deal with this data now else the car will

crash (deadlines)
• Money; we’ve been given money to get this data ready in

the next hour
• Etc.



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!



Scheduling
Algorithms

We now look at just a few of the simplest scheduling algorithms

Exercise. Have a look at textbooks for gruesome detail on the
relative performances of these algorithms



Scheduling
Algorithms

We now look at just a few of the simplest scheduling algorithms

Exercise. Have a look at textbooks for gruesome detail on the
relative performances of these algorithms



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for jobs on large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for jobs on large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation

• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for jobs on large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking

• Poor interaction with other hardware; can’t process while
printing (recall spooling)

• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for jobs on large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)

• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for jobs on large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for jobs on large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for jobs on large supercomputers



Scheduling
Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

• Good for large amounts of computation
• No overheads of multitasking
• Poor interaction with other hardware; can’t process while

printing (recall spooling)
• No interactivity

Clearly not suitable for modern machines?

Actually still the basis for jobs on large supercomputers



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking

• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput

• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average

• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved

• Difficult to estimate time-to-completion, so reliant on the
job description for this information



Scheduling
Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

• No multitasking
• Good throughput
• Similar behaviour to FIFO on average
• Long jobs suffer and might get starved
• Difficult to estimate time-to-completion, so reliant on the

job description for this information



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking

• Uses round-robin or similar to choose another task on
relinquish

• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish

• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity

• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes

• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

• Weak multitasking
• Uses round-robin or similar to choose another task on

relinquish
• Poor interactivity
• Easy for a process to starve other processes
• Hard to write “good citizen” programs

Was used on millions of personal computers for a long time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation
• Better interactivity than cooperative systems
• But still not really good for either interactive or real-time;

may have to wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation
• Better interactivity than cooperative systems
• But still not really good for either interactive or real-time;

may have to wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking

• Gives interactive processes the same time as compute
processes

• No starvation
• Better interactivity than cooperative systems
• But still not really good for either interactive or real-time;

may have to wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes

• No starvation
• Better interactivity than cooperative systems
• But still not really good for either interactive or real-time;

may have to wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation

• Better interactivity than cooperative systems
• But still not really good for either interactive or real-time;

may have to wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation
• Better interactivity than cooperative systems

• But still not really good for either interactive or real-time;
may have to wait a long time for a slice of time



Scheduling
Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

• Multitasking
• Gives interactive processes the same time as compute

processes
• No starvation
• Better interactivity than cooperative systems
• But still not really good for either interactive or real-time;

may have to wait a long time for a slice of time



Scheduling
Algorithms

Round Robin

More suited to systems where all the processes are fairly
similar; e.g., dedicated appliances like network routers that
have to decide how share network capacity fairly



Scheduling
Algorithms

Round Robin

More suited to systems where all the processes are fairly
similar; e.g., dedicated appliances like network routers that
have to decide how share network capacity fairly



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs

• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput

• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved

• Still hard to make estimates of times



Scheduling
Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

• Good for short jobs
• Good throughput
• Long jobs still can be starved
• Still hard to make estimates of times



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time
• Interactive processes get good attention as they use

relatively little CPU
• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time
• Interactive processes get good attention as they use

relatively little CPU
• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time

• Interactive processes get good attention as they use
relatively little CPU

• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time
• Interactive processes get good attention as they use

relatively little CPU

• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

• All processes make equal process in terms of CPU time
• Interactive processes get good attention as they use

relatively little CPU
• Long jobs can be starved by lots of small jobs



Scheduling
Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency



Scheduling
Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency



Scheduling
Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency



Scheduling
Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency



Scheduling
Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: and it might move
between the two over time



Scheduling
Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: and it might move
between the two over time



Scheduling
Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: and it might move
between the two over time



Scheduling
Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: and it might move
between the two over time



Scheduling
Algorithms

Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!



Scheduling
Algorithms

Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!



Scheduling
Algorithms

Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!



Scheduling
Algorithms

Similarly, priorities can be

• Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

• Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

• Purchased. Pay more, get higher priority!


