
Scheduling
Algorithms

Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

Dynamic priority =
time so far in system

cpu used so far

• A process executes repeated time slices until its priority
drops below that of another process
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• New jobs get immediate attention as CPU time is near 0
• But now critical shorter jobs might not finish in time as they

could get scheduled after a long-waiting job
• This needs frequent re-evaluation of priorities to get good

behaviour, which implies small timeslices, and so lots of
scheduling overhead
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Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order
• so RQ1 does not get a look-in until RQ0 has emptied
• and RQ2 does not get a look-in until RQ1 has emptied, and

so on
• If a process appears in a higher queue, we go back to that
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• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue: demoted
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of the next higher queue (when ready to run)

• Demoted processes in RQn get placed back at the end of
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• Similarly blocking processes in RQ0 get placed back at the
end of RQ0
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• This gives newer, shorter processes priority over older,
longer ones

• I/O processes tend to rise, getting more priority
• Compute processes tend to sink, getting less

Old processes tend to starve with this, so a variant doubles the
quantum for each level: RQ0 gets 1, RQ1 gets 2, RQ2 gets 4,
and so on

So compute intensive processes get a big bite, whenever they
get a chance, at the potential cost of responsiveness to a new
process
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Remember, in early machines, arithmetic was a lot more
time-consuming than it is now

This scheme was used by Windows NT and Unix derivatives,
as we shall see next
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much more sophisticated

Everything is based on timer interrupts every 1/60th second

A priority is computed from the CPU use of each process

Priority = base priority +
CPU time used

2

The 1/2 was a quirk of implementation and is not important
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A process with the smallest priority value is chosen next. Thus
— mostly — a process that has used less CPU

The base priority depends on whether this is a system process
or a user process, with user priority being lower (i.e., with a
larger value)

Processes of the same priority are treated round robin

Note that this is actually very similar in effect to Multilevel
Feedback Queueing where a priority of n corresponds to RQn
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second: this decays the influence of CPU usage over time and
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This algorithm gives more attention to processes that have
used less CPU recently, e.g., interactive and I/O processes

Priority = base priority +
decayed CPU time
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Generally, −20 ≤ nice ≤ 19, but only certain users
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A process that has nice −20 can really jam up the system

But nice also enables a purchased priority
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The priorities were recomputed once per second, all in a single
pass, taking a significant chunk of time (on old machines)

It does not respond quickly enough to dynamic changes in the
system

And does not scale to large numbers of processes

So this is not used in modern systems, where many 100s of
processes is common
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And there are other problems that should be addressed

Modern machines can support many users simultaneously:
what happens if user A has 9 processes and user B just 1?

Should A get 90% of the CPU time and B 10%?

Fair share scheduling is where each user (or group or other
collective entity) gets a fair share, rather than each process
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complicated, scheduling algorithms than this

They can afford to be more complicated as CPUs are now
much faster

Exercise. Read up on O(1) scheduling and The Completely
Fair Scheduler

Also have a look at scheduling for real-time systems: for when
a process must absolutely get scheduled within a given time
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It requires the collection and manipulation of many statistics
about processes

Scheduling one resource (the CPU) is hard enough

We now look at a new problem that arises when we want to
schedule multiple resources
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When we say “a process waits for the kernel” we mean, of
course, something entirely different

What actually happens is the kernel marks the process as
blocked, and does not consider it for scheduling until the
requested resource has arrived

There is no “waiting” happening: the process does not run
when blocked
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Deadlock

This can happen in an OS

Process P1 wants to copy some data from disk D1 to disk D2,
while process P2 wants to copy some data from disk D2 to disk
D1

• Initially P1 is running and makes a request for access to D2

• The OS takes over and gives P1 exclusive access to D2

• The OS decides to run P2 (not a smart OS)
• P2 runs and makes a request for access to D1

• The OS takes over and gives P2 exclusive access to D1
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Deadlock

• The OS decides to run P1

• P1 runs and makes a request for access to D1

• The OS takes over and notices P2 has locked D1, so P1
must wait until P2 has finished with it; P1 moves to state
blocked
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Deadlock

Note that you can only get deadlock if

• there is more than one resource
• there is more than one process12

1It could technically happen with just one process, but that would be quite
dumb programming to request for a resource you already have

2I’ve seen it happen


