
Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

A deadlock may be possible but will only actually happen if

4. Circular Wait There is a circular chain of processes where
each holds a resource that is needed by the next in the
circle

This says that deadlock is happening as in the formal definition



Deadlock

A deadlock may be possible but will only actually happen if

4. Circular Wait There is a circular chain of processes where
each holds a resource that is needed by the next in the
circle

This says that deadlock is happening as in the formal definition



Deadlock

A deadlock may be possible but will only actually happen if

4. Circular Wait There is a circular chain of processes where
each holds a resource that is needed by the next in the
circle

This says that deadlock is happening as in the formal definition



Deadlock

It might seem easy to avoid these conditions, but in practice it’s
harder than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

It might seem easy to avoid these conditions, but in practice it’s
harder than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

It might seem easy to avoid these conditions, but in practice it’s
harder than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

It might seem easy to avoid these conditions, but in practice it’s
harder than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

It might seem easy to avoid these conditions, but in practice it’s
harder than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock
Dining Philosophers

A popular illustration of deadlock is The Dining Philosophers

Some Philosophers wish to share a plate of spaghetti, but they
have only been provided with chopsticks

Unfortunately, there is not quite enough chopsticks to go around



Deadlock
Dining Philosophers

A popular illustration of deadlock is The Dining Philosophers

Some Philosophers wish to share a plate of spaghetti, but they
have only been provided with chopsticks

Unfortunately, there is not quite enough chopsticks to go around



Deadlock
Dining Philosophers

A popular illustration of deadlock is The Dining Philosophers

Some Philosophers wish to share a plate of spaghetti, but they
have only been provided with chopsticks

Unfortunately, there is not quite enough chopsticks to go around



Deadlock
Dining Philosophers

Dining Philosophers



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

And if they all grab the left chopstick simultaneously

4. Circular Wait. There is a circular chain of Philosophers
where each holds a chopstick that is needed by the next in
the circle

Of course, if the Philosophers were a bit more friendly, or polite,
there would not be a problem

Exercise Identify the conditions in the car gridlock scenarios



Deadlock
Dining Philosophers

And if they all grab the left chopstick simultaneously

4. Circular Wait. There is a circular chain of Philosophers
where each holds a chopstick that is needed by the next in
the circle

Of course, if the Philosophers were a bit more friendly, or polite,
there would not be a problem

Exercise Identify the conditions in the car gridlock scenarios



Deadlock
Dining Philosophers

And if they all grab the left chopstick simultaneously

4. Circular Wait. There is a circular chain of Philosophers
where each holds a chopstick that is needed by the next in
the circle

Of course, if the Philosophers were a bit more friendly, or polite,
there would not be a problem

Exercise Identify the conditions in the car gridlock scenarios



Deadlock
Dining Philosophers

And if they all grab the left chopstick simultaneously

4. Circular Wait. There is a circular chain of Philosophers
where each holds a chopstick that is needed by the next in
the circle

Of course, if the Philosophers were a bit more friendly, or polite,
there would not be a problem

Exercise Identify the conditions in the car gridlock scenarios



Deadlock

There are two approaches to the problem of deadlock

1. Prevention. Stopping it happening ever by preventing one
of the conditions occurring

2. Detection and Breaking. Letting deadlock happen, but
spotting when it does and then breaking it by destroying
one of the conditions



Deadlock

There are two approaches to the problem of deadlock

1. Prevention. Stopping it happening ever by preventing one
of the conditions occurring

2. Detection and Breaking. Letting deadlock happen, but
spotting when it does and then breaking it by destroying
one of the conditions



Deadlock

There are two approaches to the problem of deadlock

1. Prevention. Stopping it happening ever by preventing one
of the conditions occurring

2. Detection and Breaking. Letting deadlock happen, but
spotting when it does and then breaking it by destroying
one of the conditions



Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow



Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow



Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow



Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow



Deadlock
Prevention

We can prevent deadlocks by disallowing any of the conditions



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Hold-and-wait

We can require a process not to hold any resources if it ever
gets blocked on another resource

This has the non-progress feature, as noted previously, and can
be very inefficient with much grabbing and releasing to no avail



Deadlock
Prevention

Breaking Hold-and-wait

We can require a process not to hold any resources if it ever
gets blocked on another resource

This has the non-progress feature, as noted previously, and can
be very inefficient with much grabbing and releasing to no avail



Deadlock
Prevention

Breaking Hold-and-wait

We can require a process not to hold any resources if it ever
gets blocked on another resource

This has the non-progress feature, as noted previously, and can
be very inefficient with much grabbing and releasing to no avail



Deadlock
Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

• This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

• Resources given to a process might be only needed much
later, denying them to other processes in the meantime

• It may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway



Deadlock
Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

• This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

• Resources given to a process might be only needed much
later, denying them to other processes in the meantime

• It may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway



Deadlock
Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

• This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

• Resources given to a process might be only needed much
later, denying them to other processes in the meantime

• It may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway



Deadlock
Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

• This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

• Resources given to a process might be only needed much
later, denying them to other processes in the meantime

• It may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway



Deadlock
Prevention

Breaking Hold-and-wait

A variant of this was not even to admit a process to the
scheduler until all resources are available: this is even worse

Perhaps a process only needs to write to disk at the end of a 2
hour compute session: do we really want to lock the disk for 2
hours?



Deadlock
Prevention

Breaking Hold-and-wait

A variant of this was not even to admit a process to the
scheduler until all resources are available: this is even worse

Perhaps a process only needs to write to disk at the end of a 2
hour compute session: do we really want to lock the disk for 2
hours?



Deadlock
Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process



Deadlock
Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process



Deadlock
Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process



Deadlock
Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process



Deadlock
Prevention

Thus, the resource should be given back to the process in an
equivalent state to it was in when it was preempted, so the
process can continue from where it left off

For some resources this is possible, e.g., memory (see later)

For others, not. For example, a printer



Deadlock
Prevention

Thus, the resource should be given back to the process in an
equivalent state to it was in when it was preempted, so the
process can continue from where it left off

For some resources this is possible, e.g., memory (see later)

For others, not. For example, a printer



Deadlock
Prevention

Thus, the resource should be given back to the process in an
equivalent state to it was in when it was preempted, so the
process can continue from where it left off

For some resources this is possible, e.g., memory (see later)

For others, not. For example, a printer



Deadlock
Prevention

Breaking Circular Waits

One possible solution is to put an ordering on resources

R1 < R2 < R3 < . . .

E.g., (much simplified)

disk 1 < disk 2 < printer < . . .



Deadlock
Prevention

Breaking Circular Waits

One possible solution is to put an ordering on resources

R1 < R2 < R3 < . . .

E.g., (much simplified)

disk 1 < disk 2 < printer < . . .



Deadlock
Prevention

Breaking Circular Waits

One possible solution is to put an ordering on resources

R1 < R2 < R3 < . . .

E.g., (much simplified)

disk 1 < disk 2 < printer < . . .



Deadlock
Prevention

Then:

A process that holds resource R may then only request
resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk



Deadlock
Prevention

Then:

A process that holds resource R may then only request
resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk



Deadlock
Prevention

Then:

A process that holds resource R may then only request
resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk



Deadlock
Prevention

Then:

A process that holds resource R may then only request
resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk



Deadlock
Prevention

Breaking Circular Waits

Now we cannot deadlock, as a deadlock would imply A has
grabbed Ri and requested Rj ; while B has grabbed Rj and
requested Ri

For this to happen we would have both

i < j and j < i

and this is impossible



Deadlock
Prevention

Breaking Circular Waits

Now we cannot deadlock, as a deadlock would imply A has
grabbed Ri and requested Rj ; while B has grabbed Rj and
requested Ri

For this to happen we would have both

i < j and j < i

and this is impossible



Deadlock
Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have R1 and R3, but then want R2 you have to drop
R3, get R2, then regain R3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario



Deadlock
Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have R1 and R3, but then want R2 you have to drop
R3, get R2, then regain R3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario



Deadlock
Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have R1 and R3, but then want R2 you have to drop
R3, get R2, then regain R3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario



Deadlock
Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have R1 and R3, but then want R2 you have to drop
R3, get R2, then regain R3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario



Deadlock
Avoidance

In contrast, deadlock avoidance does not break the conditions,
but rather is careful not to do anything that might possibly
create a deadlock in the future

For each request, we have to decide whether granting the
resource will potentially lead to a deadlock immediately or in
the future

Not so easy, as it requires knowing what might possibly happen
in the future

An unsafe request will not be granted by the OS



Deadlock
Avoidance

In contrast, deadlock avoidance does not break the conditions,
but rather is careful not to do anything that might possibly
create a deadlock in the future

For each request, we have to decide whether granting the
resource will potentially lead to a deadlock immediately or in
the future

Not so easy, as it requires knowing what might possibly happen
in the future

An unsafe request will not be granted by the OS



Deadlock
Avoidance

In contrast, deadlock avoidance does not break the conditions,
but rather is careful not to do anything that might possibly
create a deadlock in the future

For each request, we have to decide whether granting the
resource will potentially lead to a deadlock immediately or in
the future

Not so easy, as it requires knowing what might possibly happen
in the future

An unsafe request will not be granted by the OS



Deadlock
Avoidance

In contrast, deadlock avoidance does not break the conditions,
but rather is careful not to do anything that might possibly
create a deadlock in the future

For each request, we have to decide whether granting the
resource will potentially lead to a deadlock immediately or in
the future

Not so easy, as it requires knowing what might possibly happen
in the future

An unsafe request will not be granted by the OS



Deadlock
Avoidance

There are various algorithms that address the question of
whether to grant a resource

Exercise Dijkstra’s Banker’s Algorithm is one. Read about it
and its limitations



Deadlock
Avoidance

There are various algorithms that address the question of
whether to grant a resource

Exercise Dijkstra’s Banker’s Algorithm is one. Read about it
and its limitations



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped. . . ”



Deadlock
Detection and Breaking

The chief method employed is to spot when the circular wait
happens

One method for deadlock detection uses resource request and
allocation graphs (RRAG)

P1 R1

P1 requests a resource of type R1

Process

P1 R1

One of the units is now allocated to P1

Resource with three units it can allocate

RRAGs



Deadlock
Detection and Breaking

The chief method employed is to spot when the circular wait
happens

One method for deadlock detection uses resource request and
allocation graphs (RRAG)

P1 R1

P1 requests a resource of type R1

Process

P1 R1

One of the units is now allocated to P1

Resource with three units it can allocate

RRAGs



Deadlock
Detection and Breaking

P1 R1 P2

P1 requests from R1, but it has no free units, so P1 will be blocked



Deadlock
Detection and Breaking

P2P1

R1

R2

Circular Wait

P1 requests from R1, but it has been allocated to P2;
P2 requests from R2, but it has been allocated to R1:
this is deadlock



Deadlock
Detection and Breaking

So deadlock detection is just finding these kinds of loops in
RRAGs

This can be done by a fairly simple graph reduction method that
takes a graph and removes certain edges until either (a) there
are no edges left or (b) a loop is found

Exercise Read about this



Deadlock
Detection and Breaking

So deadlock detection is just finding these kinds of loops in
RRAGs

This can be done by a fairly simple graph reduction method that
takes a graph and removes certain edges until either (a) there
are no edges left or (b) a loop is found

Exercise Read about this



Deadlock
Detection and Breaking

So deadlock detection is just finding these kinds of loops in
RRAGs

This can be done by a fairly simple graph reduction method that
takes a graph and removes certain edges until either (a) there
are no edges left or (b) a loop is found

Exercise Read about this



Deadlock
Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

• Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM killers” are
tricky to get right

• Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

• Add resources: rarely possible



Deadlock
Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

• Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM killers” are
tricky to get right

• Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

• Add resources: rarely possible



Deadlock
Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

• Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM killers” are
tricky to get right

• Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

• Add resources: rarely possible



Deadlock
Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

• Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM killers” are
tricky to get right

• Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

• Add resources: rarely possible



Deadlock
Detection and Breaking

Exercise Think about how you might apply deadlock prevention
or breaking to (a) Dining Philosophers and (b) the car deadlock
scenarios



Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening



Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening



Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening



Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening



Deadlock

Some resources are preemptable, e.g., memory (as we shall
discuss in depth later), but a more general solution (which also
applies to memory) is virtualisation, where the OS pretends
each process has sole access to a resource

We have already seen this for printers in the form of spooling

A process thinks it is writing to a printer, but it is actually writing
to a tape, and the tape is later written to the printer



Deadlock

Some resources are preemptable, e.g., memory (as we shall
discuss in depth later), but a more general solution (which also
applies to memory) is virtualisation, where the OS pretends
each process has sole access to a resource

We have already seen this for printers in the form of spooling

A process thinks it is writing to a printer, but it is actually writing
to a tape, and the tape is later written to the printer



Deadlock

Some resources are preemptable, e.g., memory (as we shall
discuss in depth later), but a more general solution (which also
applies to memory) is virtualisation, where the OS pretends
each process has sole access to a resource

We have already seen this for printers in the form of spooling

A process thinks it is writing to a printer, but it is actually writing
to a tape, and the tape is later written to the printer



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling

Exercise Virtualisation allows the OS to prevent deadlocks. So
which of the Coffman Conditions does it disallow?



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling

Exercise Virtualisation allows the OS to prevent deadlocks. So
which of the Coffman Conditions does it disallow?



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling

Exercise Virtualisation allows the OS to prevent deadlocks. So
which of the Coffman Conditions does it disallow?



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling

Exercise Virtualisation allows the OS to prevent deadlocks. So
which of the Coffman Conditions does it disallow?



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling

Exercise Virtualisation allows the OS to prevent deadlocks. So
which of the Coffman Conditions does it disallow?


