
Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when looking at memory it can be hard to
know if you are reading the data you want or some
previous junk that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when looking at memory it can be hard to
know if you are reading the data you want or some
previous junk that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when looking at memory it can be hard to
know if you are reading the data you want or some
previous junk that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when looking at memory it can be hard to
know if you are reading the data you want or some
previous junk that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

• Which area of memory to use? A well-known area, or
per-process areas?

• How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when looking at memory it can be hard to
know if you are reading the data you want or some
previous junk that happened to be lying around

• So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

• The memory protections must be set properly to allow only
the authorised processes to read or write it



Inter-Process Communication
Shared Memory

The speed of shared memory means that it is very good for
IPC, as long as it is supported by further mechanisms like
signals or semaphores to flag when data is ready

More on shared memory when we get to memory management

Exercise Compare shared memory and pipes



Inter-Process Communication
Shared Memory

The speed of shared memory means that it is very good for
IPC, as long as it is supported by further mechanisms like
signals or semaphores to flag when data is ready

More on shared memory when we get to memory management

Exercise Compare shared memory and pipes



Inter-Process Communication
Shared Memory

The speed of shared memory means that it is very good for
IPC, as long as it is supported by further mechanisms like
signals or semaphores to flag when data is ready

More on shared memory when we get to memory management

Exercise Compare shared memory and pipes



Inter-Process Communication
And Others

There are several other IPC mechanisms in use

Including

• signals: like interrupts, but at the software level
• semaphores: a way for processes to synchronise (e.g.,

have one wait for another)
• software buses: a software-level messaging system,

extensively used in GUIs to transfer information between
windows, e.g., cut-and-paste

Exercise Read about these



Inter-Process Communication
And Others

There are several other IPC mechanisms in use

Including

• signals: like interrupts, but at the software level
• semaphores: a way for processes to synchronise (e.g.,

have one wait for another)
• software buses: a software-level messaging system,

extensively used in GUIs to transfer information between
windows, e.g., cut-and-paste

Exercise Read about these



Inter-Process Communication
And Others

There are several other IPC mechanisms in use

Including

• signals: like interrupts, but at the software level

• semaphores: a way for processes to synchronise (e.g.,
have one wait for another)

• software buses: a software-level messaging system,
extensively used in GUIs to transfer information between
windows, e.g., cut-and-paste

Exercise Read about these



Inter-Process Communication
And Others

There are several other IPC mechanisms in use

Including

• signals: like interrupts, but at the software level
• semaphores: a way for processes to synchronise (e.g.,

have one wait for another)

• software buses: a software-level messaging system,
extensively used in GUIs to transfer information between
windows, e.g., cut-and-paste

Exercise Read about these



Inter-Process Communication
And Others

There are several other IPC mechanisms in use

Including

• signals: like interrupts, but at the software level
• semaphores: a way for processes to synchronise (e.g.,

have one wait for another)
• software buses: a software-level messaging system,

extensively used in GUIs to transfer information between
windows, e.g., cut-and-paste

Exercise Read about these



Inter-Process Communication
And Others

There are several other IPC mechanisms in use

Including

• signals: like interrupts, but at the software level
• semaphores: a way for processes to synchronise (e.g.,

have one wait for another)
• software buses: a software-level messaging system,

extensively used in GUIs to transfer information between
windows, e.g., cut-and-paste

Exercise Read about these



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?

• The amount of data to be communicated: just a bit or a
huge datafile?

• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?

• What is available?
• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?

• What your boss tells you to use
• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use

• and so on



Inter-Process Communication

So, which IPC mechanism to choose?

As always, it depends on the application

The best way to choose is to have lots of experience of using
them

• The level your program is at: low or high?
• The amount of data to be communicated: just a bit or a

huge datafile?
• What is available?
• What your boss tells you to use
• and so on



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 16GB in your PC, but it’s not enough!

Gates’ Law: programs double in size every 18 months

(Really Wirth’s Law: Software is decelerating faster than
hardware is accelerating)



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 16GB in your PC, but it’s not enough!

Gates’ Law: programs double in size every 18 months

(Really Wirth’s Law: Software is decelerating faster than
hardware is accelerating)



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 16GB in your PC, but it’s not enough!

Gates’ Law: programs double in size every 18 months

(Really Wirth’s Law: Software is decelerating faster than
hardware is accelerating)



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 16GB in your PC, but it’s not enough!

Gates’ Law: programs double in size every 18 months

(Really Wirth’s Law: Software is decelerating faster than
hardware is accelerating)



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 16GB in your PC, but it’s not enough!

Gates’ Law: programs double in size every 18 months

(Really Wirth’s Law: Software is decelerating faster than
hardware is accelerating)



Memory
Physical Memory

We first consider how processes (code and data) should be laid
out in memory

This is called physical memory layout to distinguish it from
virtual memory, which comes later



Memory
Physical Memory

We first consider how processes (code and data) should be laid
out in memory

This is called physical memory layout to distinguish it from
virtual memory, which comes later



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

• Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

• Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation

• Freeing while the process is running
• Freeing at process end



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

• Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

• Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation

• Freeing while the process is running
• Freeing at process end



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

• Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

• Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation

• Freeing while the process is running
• Freeing at process end



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

• Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

• Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation

• Freeing while the process is running

• Freeing at process end



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

• Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

• Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation

• Freeing while the process is running
• Freeing at process end



Memory
Physical Memory

But also the kernel needs memory:

• Allocation and freeing within the kernel. The kernel has to
be dynamic otherwise it would be very difficult to get
started, e.g., creating processor control blocks



Memory
Physical Memory

But also the kernel needs memory:

• Allocation and freeing within the kernel. The kernel has to
be dynamic otherwise it would be very difficult to get
started, e.g., creating processor control blocks



Memory
Physical Memory

Early operating systems were not dynamic

So they could only run a fixed number of processes

And the processes were of a fixed size

Reflecting this, early computer languages did not support
dynamic allocation, e.g., FORTRAN, every array must be of a
fixed size, specified in the source code

Dynamic allocation for both kernel and the processes was soon
introduced in OSs, but computer languages took a while to
catch up with the new facility



Memory
Physical Memory

Early operating systems were not dynamic

So they could only run a fixed number of processes

And the processes were of a fixed size

Reflecting this, early computer languages did not support
dynamic allocation, e.g., FORTRAN, every array must be of a
fixed size, specified in the source code

Dynamic allocation for both kernel and the processes was soon
introduced in OSs, but computer languages took a while to
catch up with the new facility



Memory
Physical Memory

Early operating systems were not dynamic

So they could only run a fixed number of processes

And the processes were of a fixed size

Reflecting this, early computer languages did not support
dynamic allocation, e.g., FORTRAN, every array must be of a
fixed size, specified in the source code

Dynamic allocation for both kernel and the processes was soon
introduced in OSs, but computer languages took a while to
catch up with the new facility



Memory
Physical Memory

Early operating systems were not dynamic

So they could only run a fixed number of processes

And the processes were of a fixed size

Reflecting this, early computer languages did not support
dynamic allocation, e.g., FORTRAN, every array must be of a
fixed size, specified in the source code

Dynamic allocation for both kernel and the processes was soon
introduced in OSs, but computer languages took a while to
catch up with the new facility



Memory
Physical Memory

Early operating systems were not dynamic

So they could only run a fixed number of processes

And the processes were of a fixed size

Reflecting this, early computer languages did not support
dynamic allocation, e.g., FORTRAN, every array must be of a
fixed size, specified in the source code

Dynamic allocation for both kernel and the processes was soon
introduced in OSs, but computer languages took a while to
catch up with the new facility



Memory
Physical Memory

Physical memory in an early computers looked something like
this:

addresses
increasing

process

process

and data

kernel code

data

code

Memory Layout



Memory
Physical Memory

Remember the kernel itself needs code and data space

A gap above the kernel area allows for dynamic allocation of
memory to itself

But the earliest systems had no dynamic behaviour at all, both
OS and programs were completely static

Again, some early languages (FORTRAN, again) did not have
a stack, and thus no recursion



Memory
Physical Memory

Remember the kernel itself needs code and data space

A gap above the kernel area allows for dynamic allocation of
memory to itself

But the earliest systems had no dynamic behaviour at all, both
OS and programs were completely static

Again, some early languages (FORTRAN, again) did not have
a stack, and thus no recursion



Memory
Physical Memory

Remember the kernel itself needs code and data space

A gap above the kernel area allows for dynamic allocation of
memory to itself

But the earliest systems had no dynamic behaviour at all, both
OS and programs were completely static

Again, some early languages (FORTRAN, again) did not have
a stack, and thus no recursion



Memory
Physical Memory

Remember the kernel itself needs code and data space

A gap above the kernel area allows for dynamic allocation of
memory to itself

But the earliest systems had no dynamic behaviour at all, both
OS and programs were completely static

Again, some early languages (FORTRAN, again) did not have
a stack, and thus no recursion



Memory
Physical Memory

Partitioning

The earliest and simplest memory layout is a static system
called partitioning, where areas are allocated at boot time

A process is loaded into the smallest free partition it will fit into



Memory
Physical Memory

Partitioning

The earliest and simplest memory layout is a static system
called partitioning, where areas are allocated at boot time

kernel prog
and data

pre−
allocated

equal size variable size
partitions

A process is loaded into the smallest free partition it will fit into



Memory
Physical Memory

Partitioning

The earliest and simplest memory layout is a static system
called partitioning, where areas are allocated at boot time

kernel prog
and data

pre−
allocated

kernel prog
and data

pre−
allocated

variable sizeequal size
partitions partitions

A process is loaded into the smallest free partition it will fit into



Memory
Physical Memory

If you don’t have dynamic allocation even in the kernel (e.g., for
allocating new PCBs), then having fixed partitions is ideal

Equal size is easy to implement, but usually causes wasted
space when a process does not fill its allocation

And it can’t cope with larger processes—you would have to
reboot the computer with re-configured partitions

Variable size is not much harder to implement, but its efficiency
depends heavily on the choice of partition sizes as ideally they
should match the expected process sizes



Memory
Physical Memory

If you don’t have dynamic allocation even in the kernel (e.g., for
allocating new PCBs), then having fixed partitions is ideal

Equal size is easy to implement, but usually causes wasted
space when a process does not fill its allocation

And it can’t cope with larger processes—you would have to
reboot the computer with re-configured partitions

Variable size is not much harder to implement, but its efficiency
depends heavily on the choice of partition sizes as ideally they
should match the expected process sizes



Memory
Physical Memory

If you don’t have dynamic allocation even in the kernel (e.g., for
allocating new PCBs), then having fixed partitions is ideal

Equal size is easy to implement, but usually causes wasted
space when a process does not fill its allocation

And it can’t cope with larger processes—you would have to
reboot the computer with re-configured partitions

Variable size is not much harder to implement, but its efficiency
depends heavily on the choice of partition sizes as ideally they
should match the expected process sizes



Memory
Physical Memory

Partitioning is a good arrangement if you only run a fixed set of
applications that you know in advance, e.g., a stock manager
plus a payroll system plus a employees record system

IBM’s OS/360 (mid 1960s) had three partitions: one for
spooling punched cards to disk; one for spooling disk to
printers; and one to run jobs



Memory
Physical Memory

Partitioning is a good arrangement if you only run a fixed set of
applications that you know in advance, e.g., a stock manager
plus a payroll system plus a employees record system

IBM’s OS/360 (mid 1960s) had three partitions: one for
spooling punched cards to disk; one for spooling disk to
printers; and one to run jobs



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident

If a non-resident part of the process is needed, the programmer
must know this and include code to load the needed part of the
process into memory, overwriting a part of the process they do
not need at the moment

If that part of the process is needed again later, the
programmer has to reload the code



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident

If a non-resident part of the process is needed, the programmer
must know this and include code to load the needed part of the
process into memory, overwriting a part of the process they do
not need at the moment

If that part of the process is needed again later, the
programmer has to reload the code



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident

If a non-resident part of the process is needed, the programmer
must know this and include code to load the needed part of the
process into memory, overwriting a part of the process they do
not need at the moment

If that part of the process is needed again later, the
programmer has to reload the code



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident

If a non-resident part of the process is needed, the programmer
must know this and include code to load the needed part of the
process into memory, overwriting a part of the process they do
not need at the moment

If that part of the process is needed again later, the
programmer has to reload the code



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident

If a non-resident part of the process is needed, the programmer
must know this and include code to load the needed part of the
process into memory, overwriting a part of the process they do
not need at the moment

If that part of the process is needed again later, the
programmer has to reload the code



Memory
Physical Memory

This works, at the cost of some speed of execution, but only if
you are an excellent programmer who can keep track on what
parts of code are loaded at any particular time

A similar trick works with data: but with newly generated data
you have to save it somewhere (e.g., disk) first, before
overwriting it, so that it can be loaded back in later, when
needed

This trick of swapping memory back and forth to the disk gets a
big boost later



Memory
Physical Memory

This works, at the cost of some speed of execution, but only if
you are an excellent programmer who can keep track on what
parts of code are loaded at any particular time

A similar trick works with data: but with newly generated data
you have to save it somewhere (e.g., disk) first, before
overwriting it, so that it can be loaded back in later, when
needed

This trick of swapping memory back and forth to the disk gets a
big boost later



Memory
Physical Memory

This works, at the cost of some speed of execution, but only if
you are an excellent programmer who can keep track on what
parts of code are loaded at any particular time

A similar trick works with data: but with newly generated data
you have to save it somewhere (e.g., disk) first, before
overwriting it, so that it can be loaded back in later, when
needed

This trick of swapping memory back and forth to the disk gets a
big boost later



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

• it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

• more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely

• similarly for data: we will have to keep track of what data is
where

(But when we come to virtual memory later we shall see that
exactly this is possible with modern hardware!)



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

• it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

• more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely

• similarly for data: we will have to keep track of what data is
where

(But when we come to virtual memory later we shall see that
exactly this is possible with modern hardware!)



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

• it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

• more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely

• similarly for data: we will have to keep track of what data is
where

(But when we come to virtual memory later we shall see that
exactly this is possible with modern hardware!)



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

• it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

• more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely

• similarly for data: we will have to keep track of what data is
where

(But when we come to virtual memory later we shall see that
exactly this is possible with modern hardware!)



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

• it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

• more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely

• similarly for data: we will have to keep track of what data is
where

(But when we come to virtual memory later we shall see that
exactly this is possible with modern hardware!)



Memory
Language Support for Dynamic Allocation

These days dynamic allocation is common in programming
languages

• Implicit memory management, e.g., Java. Where the
language controls the creation and deletion of objects
bigobject x; // memory is allocated for x

x = foo(); // that memory is now inaccessible

• Explicit memory management, e.g., C. Where the
programmer controls the creation and deletion of objects
(malloc and free)

Amongst several other approaches

So an OS must be able to support this



Memory
Language Support for Dynamic Allocation

These days dynamic allocation is common in programming
languages

• Implicit memory management, e.g., Java. Where the
language controls the creation and deletion of objects
bigobject x; // memory is allocated for x

x = foo(); // that memory is now inaccessible

• Explicit memory management, e.g., C. Where the
programmer controls the creation and deletion of objects
(malloc and free)

Amongst several other approaches

So an OS must be able to support this



Memory
Language Support for Dynamic Allocation

These days dynamic allocation is common in programming
languages

• Implicit memory management, e.g., Java. Where the
language controls the creation and deletion of objects
bigobject x; // memory is allocated for x

x = foo(); // that memory is now inaccessible

• Explicit memory management, e.g., C. Where the
programmer controls the creation and deletion of objects
(malloc and free)

Amongst several other approaches

So an OS must be able to support this



Memory
Language Support for Dynamic Allocation

These days dynamic allocation is common in programming
languages

• Implicit memory management, e.g., Java. Where the
language controls the creation and deletion of objects
bigobject x; // memory is allocated for x

x = foo(); // that memory is now inaccessible

• Explicit memory management, e.g., C. Where the
programmer controls the creation and deletion of objects
(malloc and free)

Amongst several other approaches

So an OS must be able to support this



Memory
Language Support for Dynamic Allocation

These days dynamic allocation is common in programming
languages

• Implicit memory management, e.g., Java. Where the
language controls the creation and deletion of objects
bigobject x; // memory is allocated for x

x = foo(); // that memory is now inaccessible

• Explicit memory management, e.g., C. Where the
programmer controls the creation and deletion of objects
(malloc and free)

Amongst several other approaches

So an OS must be able to support this



Memory
Physical Memory

Dynamic Partitioning

We need to to be dynamic: the first step is being able to create
and allocate a partition of the appropriate size as needed

A lot more complicated to implement, but this allows the
process (i.e., the job submission) to say how big a partition it
needs and the OS allocates just that



Memory
Physical Memory

Dynamic Partitioning

We need to to be dynamic: the first step is being able to create
and allocate a partition of the appropriate size as needed

A lot more complicated to implement, but this allows the
process (i.e., the job submission) to say how big a partition it
needs and the OS allocates just that



Memory
Physical Memory

Dynamic Partitioning

We need to to be dynamic: the first step is being able to create
and allocate a partition of the appropriate size as needed

A lot more complicated to implement, but this allows the
process (i.e., the job submission) to say how big a partition it
needs and the OS allocates just that



Memory
Physical Memory

We can allocate sequentially, moving up memory



Memory
Physical Memory

We can allocate sequentially, moving up memory

kernel prog
and data

3

13



Memory
Physical Memory

We can allocate sequentially, moving up memory

kernel prog
and data

3

7

6



Memory
Physical Memory

We can allocate sequentially, moving up memory

kernel prog
and data

3

7

2

4



Memory
Physical Memory

The problem is when a process ends and we get the memory
back: it creates holes

kernel prog
and data

7

2

3

4

We have space enough to run a process of size 5, but nowhere
to put it



Memory
Physical Memory

The problem is when a process ends and we get the memory
back: it creates holes

kernel prog
and data

7

2

3

4

We have space enough to run a process of size 5, but nowhere
to put it



Memory
Physical Memory

The problem is when a process ends and we get the memory
back: it creates holes

kernel prog
and data

7

2

3

4

We have space enough to run a process of size 5, but nowhere
to put it



Memory
Physical Memory

This is a general problem, called fragmentation and is very
difficult to solve effectively

The more processes come and go, the worse the fragmentation
gets



Memory
Physical Memory

This is a general problem, called fragmentation and is very
difficult to solve effectively

The more processes come and go, the worse the fragmentation
gets



Memory
Physical Memory

We need to keep a list of free blocks so we can track free
space: a freelist

kernel prog
and data

7

2

3

4

free
list



Memory
Physical Memory

We need to keep a list of free blocks so we can track free
space: a freelist

kernel prog
and data

7

2

3

4

free
list



Memory
Physical Memory

When a block is freed, put it in the freelist. It helps to keep the
freelist sorted in address order:

kernel prog
and data

7

2

3

4

free
list



Memory
Physical Memory

When a block is freed, put it in the freelist. It helps to keep the
freelist sorted in address order:

kernel prog

and data

7

2

3

4

free
list



Memory
Physical Memory

Slightly more clever is to coalesce physically adjacent blocks

kernel prog
and data

2

4

free
list

10



Memory
Physical Memory

When we want some space, we search the freelist

We don’t want to waste space, so after choosing a big enough
block we slice off the chunk we need and return the unused
part to the freelist

But there might be several blocks on the freelist that we could
use: which one to choose?

Strategies for choosing blocks include:

• Best Fit. Find the smallest available big enough hole. Slow
as we always have to search the entire freelist and results
in lots of small fragments that are effectively useless as
they are too small to be allocated



Memory
Physical Memory

When we want some space, we search the freelist

We don’t want to waste space, so after choosing a big enough
block we slice off the chunk we need and return the unused
part to the freelist

But there might be several blocks on the freelist that we could
use: which one to choose?

Strategies for choosing blocks include:

• Best Fit. Find the smallest available big enough hole. Slow
as we always have to search the entire freelist and results
in lots of small fragments that are effectively useless as
they are too small to be allocated



Memory
Physical Memory

When we want some space, we search the freelist

We don’t want to waste space, so after choosing a big enough
block we slice off the chunk we need and return the unused
part to the freelist

But there might be several blocks on the freelist that we could
use: which one to choose?

Strategies for choosing blocks include:

• Best Fit. Find the smallest available big enough hole. Slow
as we always have to search the entire freelist and results
in lots of small fragments that are effectively useless as
they are too small to be allocated



Memory
Physical Memory

When we want some space, we search the freelist

We don’t want to waste space, so after choosing a big enough
block we slice off the chunk we need and return the unused
part to the freelist

But there might be several blocks on the freelist that we could
use: which one to choose?

Strategies for choosing blocks include:

• Best Fit. Find the smallest available big enough hole. Slow
as we always have to search the entire freelist and results
in lots of small fragments that are effectively useless as
they are too small to be allocated



Memory
Physical Memory

When we want some space, we search the freelist

We don’t want to waste space, so after choosing a big enough
block we slice off the chunk we need and return the unused
part to the freelist

But there might be several blocks on the freelist that we could
use: which one to choose?

Strategies for choosing blocks include:

• Best Fit. Find the smallest available big enough hole. Slow
as we always have to search the entire freelist and results
in lots of small fragments that are effectively useless as
they are too small to be allocated



Memory
Physical Memory

• First Fit. Use the first available big enough hole. Initially
faster than Best Fit and tends to leave larger and more
useful fragments. But fragments tend to be created near
the front of the freelist, so we have to search further and
further each time

• Worst Fit. Find the biggest available big enough hole.
Strangely this works out better than you think. Slicing
chunks off bigger blocks tends to leave larger fragments
that are more likely to be useful. Marginally faster than
Best Fit as we have larger and therefore fewer blocks in the
freelist to search through



Memory
Physical Memory

• First Fit. Use the first available big enough hole. Initially
faster than Best Fit and tends to leave larger and more
useful fragments. But fragments tend to be created near
the front of the freelist, so we have to search further and
further each time

• Worst Fit. Find the biggest available big enough hole.
Strangely this works out better than you think. Slicing
chunks off bigger blocks tends to leave larger fragments
that are more likely to be useful. Marginally faster than
Best Fit as we have larger and therefore fewer blocks in the
freelist to search through



Memory
Physical Memory

• Next Fit. Continue looking from where we last allocated
and take the next available big enough hole. Fast, and
improves on First Fit by spreading small fragments across
memory

• And many others

There are plenty of other memory management systems (e.g.,
Buddy memory allocation; Slab allocation; etc.) targeting the
fragmentation problem



Memory
Physical Memory

• Next Fit. Continue looking from where we last allocated
and take the next available big enough hole. Fast, and
improves on First Fit by spreading small fragments across
memory

• And many others

There are plenty of other memory management systems (e.g.,
Buddy memory allocation; Slab allocation; etc.) targeting the
fragmentation problem



Memory
Physical Memory

• Next Fit. Continue looking from where we last allocated
and take the next available big enough hole. Fast, and
improves on First Fit by spreading small fragments across
memory

• And many others

There are plenty of other memory management systems (e.g.,
Buddy memory allocation; Slab allocation; etc.) targeting the
fragmentation problem



Memory
Physical Memory

Note that fragments are created in two ways:

• when carved off a bigger block in an allocation
• when returned at process exit

The second generally gives us larger fragments, but both need
to be addressed



Memory
Physical Memory

Note that fragments are created in two ways:

• when carved off a bigger block in an allocation

• when returned at process exit

The second generally gives us larger fragments, but both need
to be addressed



Memory
Physical Memory

Note that fragments are created in two ways:

• when carved off a bigger block in an allocation
• when returned at process exit

The second generally gives us larger fragments, but both need
to be addressed



Memory
Physical Memory

Note that fragments are created in two ways:

• when carved off a bigger block in an allocation
• when returned at process exit

The second generally gives us larger fragments, but both need
to be addressed



Memory
Physical Memory

Allocation of physical memory is still a problem in current
machines where certain kinds of hardware need large
contiguous chunks of physical memory, e.g., GPUs


