
Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

Some languages are designed to make good programming
easier, while some are designed to make bad programming
harder

Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

Some languages are designed to make good programming
easier, while some are designed to make bad programming
harder

Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

Some languages are designed to make good programming
easier, while some are designed to make bad programming
harder

Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

Some languages are designed to make good programming
easier, while some are designed to make bad programming
harder

Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

Some languages are designed to make good programming
easier, while some are designed to make bad programming
harder

Language Families

Examples: some languages that are generally regarded as
being in this family

Again, many languages can live in more than one family

Some people would be upset if we called Java procedural (it
has procedural features), but its main distinguishing feature is
being object oriented

Language Families

Examples: some languages that are generally regarded as
being in this family

Again, many languages can live in more than one family

Some people would be upset if we called Java procedural (it
has procedural features), but its main distinguishing feature is
being object oriented

Language Families

Examples: some languages that are generally regarded as
being in this family

Again, many languages can live in more than one family

Some people would be upset if we called Java procedural (it
has procedural features), but its main distinguishing feature is
being object oriented

Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a new language is control of complexity : how
can I write a bigger program that is still correct?

Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a new language is control of complexity : how
can I write a bigger program that is still correct?

Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a new language is control of complexity : how
can I write a bigger program that is still correct?

Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a new language is control of complexity : how
can I write a bigger program that is still correct?

Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a new language is control of complexity : how
can I write a bigger program that is still correct?

Language Families

Many languages were designed to solve a particular problem or
class of problems, e.g.: symbolic algebra; logic; business;
string manipulation; drawing pictures; manipulating Web pages

The number of general purpose languages is relatively small

We start by looking at the earlier, unstructured, languages

Language Families

Many languages were designed to solve a particular problem or
class of problems, e.g.: symbolic algebra; logic; business;
string manipulation; drawing pictures; manipulating Web pages

The number of general purpose languages is relatively small

We start by looking at the earlier, unstructured, languages

Language Families

Many languages were designed to solve a particular problem or
class of problems, e.g.: symbolic algebra; logic; business;
string manipulation; drawing pictures; manipulating Web pages

The number of general purpose languages is relatively small

We start by looking at the earlier, unstructured, languages

Unstructured Languages

Purpose: general programming

Examples: assembly language, early Basic, . . .

Notable features: lack of language features to help structure
large programs

Unstructured Languages
Feet

• Assembly language: You try to shoot yourself in the foot
only to discover you must first reinvent the gun, the bullet,
and your foot. After that’s done, you pull the trigger, the
gun beeps several times, then crashes.

• Basic: Shoot yourself in the foot with a water pistol. On big
systems, continue until entire lower body is waterlogged

Unstructured Languages
Feet

• Assembly language: You try to shoot yourself in the foot
only to discover you must first reinvent the gun, the bullet,
and your foot. After that’s done, you pull the trigger, the
gun beeps several times, then crashes.
• Basic: Shoot yourself in the foot with a water pistol. On big

systems, continue until entire lower body is waterlogged

Unstructured Languages

These languages (it is arguable whether assembly language is
even a language) were used before there were any clear ideas
in CS on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

Unstructured Languages

These languages (it is arguable whether assembly language is
even a language) were used before there were any clear ideas
in CS on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

Unstructured Languages

These languages (it is arguable whether assembly language is
even a language) were used before there were any clear ideas
in CS on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

Unstructured Languages

It was soon discovered that you can’t write bigger programs in
this way

Languages needed structuring mechanisms to help the
programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide those mechanisms

Unstructured Languages

It was soon discovered that you can’t write bigger programs in
this way

Languages needed structuring mechanisms to help the
programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide those mechanisms

Unstructured Languages

It was soon discovered that you can’t write bigger programs in
this way

Languages needed structuring mechanisms to help the
programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide those mechanisms

Procedural Languages

Purpose: general programming

Examples: C, Fortran, Cobol, Pascal, Oberon, Algol, Ada, later
Basic, . . .

Notable features: use of functions (procedures) to provide
structure and control complexity

Procedural Languages
Feet

• Algol: You shoot yourself in the foot with a musket. The
musket is aesthetically fascinating and the wound baffles
the adolescent medic in the emergency room

• Algol 68: You mildly deprocedure the gun, the bullet gets
firmly dereferenced, and your foot is strongly coerced to
void
• Pascal: The compiler won’t let you shoot yourself in the

foot
• Oberon: The gun keeps jamming and the bullets are

probably blanks, so you kick the computer and break your
foot

Procedural Languages
Feet

• Algol: You shoot yourself in the foot with a musket. The
musket is aesthetically fascinating and the wound baffles
the adolescent medic in the emergency room
• Algol 68: You mildly deprocedure the gun, the bullet gets

firmly dereferenced, and your foot is strongly coerced to
void

• Pascal: The compiler won’t let you shoot yourself in the
foot
• Oberon: The gun keeps jamming and the bullets are

probably blanks, so you kick the computer and break your
foot

Procedural Languages
Feet

• Algol: You shoot yourself in the foot with a musket. The
musket is aesthetically fascinating and the wound baffles
the adolescent medic in the emergency room
• Algol 68: You mildly deprocedure the gun, the bullet gets

firmly dereferenced, and your foot is strongly coerced to
void
• Pascal: The compiler won’t let you shoot yourself in the

foot

• Oberon: The gun keeps jamming and the bullets are
probably blanks, so you kick the computer and break your
foot

Procedural Languages
Feet

• Algol: You shoot yourself in the foot with a musket. The
musket is aesthetically fascinating and the wound baffles
the adolescent medic in the emergency room
• Algol 68: You mildly deprocedure the gun, the bullet gets

firmly dereferenced, and your foot is strongly coerced to
void
• Pascal: The compiler won’t let you shoot yourself in the

foot
• Oberon: The gun keeps jamming and the bullets are

probably blanks, so you kick the computer and break your
foot

Procedural Languages
Feet

• Ada: If you are dumb enough to actually use this language,
the United States Department of Defense will kidnap you,
stand you up in front of a firing squad, and tell the soldiers,
“Shoot at the feet.”

• Ada (2): After correctly packing your foot, you attempt to
concurrently load the gun, pull the trigger, scream, and
confidently aim at your foot knowing it is safe. However the
cordite in the round does an Unchecked Conversion, fires
and shoots you in the foot anyway.

Procedural Languages
Feet

• Ada: If you are dumb enough to actually use this language,
the United States Department of Defense will kidnap you,
stand you up in front of a firing squad, and tell the soldiers,
“Shoot at the feet.”
• Ada (2): After correctly packing your foot, you attempt to

concurrently load the gun, pull the trigger, scream, and
confidently aim at your foot knowing it is safe. However the
cordite in the round does an Unchecked Conversion, fires
and shoots you in the foot anyway.

Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran, Lisp) and are
still used widely today (C, Lisp and Fortran)

They are very successful and many large systems (millions of
lines of code) have been written using them, particularly C

[C is] like juggling chainsaws

Linus Torvalds, overseer of the Linux kernel

Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran, Lisp) and are
still used widely today (C, Lisp and Fortran)

They are very successful and many large systems (millions of
lines of code) have been written using them, particularly C

[C is] like juggling chainsaws

Linus Torvalds, overseer of the Linux kernel

Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran, Lisp) and are
still used widely today (C, Lisp and Fortran)

They are very successful and many large systems (millions of
lines of code) have been written using them, particularly C

[C is] like juggling chainsaws

Linus Torvalds, overseer of the Linux kernel

Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran, Lisp) and are
still used widely today (C, Lisp and Fortran)

They are very successful and many large systems (millions of
lines of code) have been written using them, particularly C

[C is] like juggling chainsaws

Linus Torvalds, overseer of the Linux kernel

Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran, Lisp) and are
still used widely today (C, Lisp and Fortran)

They are very successful and many large systems (millions of
lines of code) have been written using them, particularly C

[C is] like juggling chainsaws

Linus Torvalds, overseer of the Linux kernel

Logic Languages

Purpose: Logic programming

Examples: Prolog, ASP, . . .

Notable features: don’t describe how to do something, just
what you want as an answer

Logic Languages

“All men are mortal”. “Socrates is a man”. Is Socrates mortal?

man(X) :- mortal(X)

man(socrates)

?- mortal(socrates)
-> Yes

“Is anything mortal?”

?- mortal(X)
-> X = socrates

Logic Languages

“All men are mortal”. “Socrates is a man”. Is Socrates mortal?

man(X) :- mortal(X)

man(socrates)

?- mortal(socrates)

-> Yes

“Is anything mortal?”

?- mortal(X)
-> X = socrates

Logic Languages

“All men are mortal”. “Socrates is a man”. Is Socrates mortal?

man(X) :- mortal(X)

man(socrates)

?- mortal(socrates)
-> Yes

“Is anything mortal?”

?- mortal(X)
-> X = socrates

Logic Languages

“All men are mortal”. “Socrates is a man”. Is Socrates mortal?

man(X) :- mortal(X)

man(socrates)

?- mortal(socrates)
-> Yes

“Is anything mortal?”

?- mortal(X)
-> X = socrates

Logic Languages

“All men are mortal”. “Socrates is a man”. Is Socrates mortal?

man(X) :- mortal(X)

man(socrates)

?- mortal(socrates)
-> Yes

“Is anything mortal?”

?- mortal(X)

-> X = socrates

Logic Languages

“All men are mortal”. “Socrates is a man”. Is Socrates mortal?

man(X) :- mortal(X)

man(socrates)

?- mortal(socrates)
-> Yes

“Is anything mortal?”

?- mortal(X)
-> X = socrates

Logic Languages

Logic languages have also been around a long time, but are
much less popular than other families

Many people have difficulty using them for general purpose
programming

For logic problems, of course, they are excellent

Much used in early AI, before deep learning became the only
accepted way of solving every problem

Exercise Read about how Prolog was used (in 2023) to find a
set of 27 lottery tickets that is guaranteed a win in the UK
lottery (N.B. not necessarily a profit!)

Logic Languages

Logic languages have also been around a long time, but are
much less popular than other families

Many people have difficulty using them for general purpose
programming

For logic problems, of course, they are excellent

Much used in early AI, before deep learning became the only
accepted way of solving every problem

Exercise Read about how Prolog was used (in 2023) to find a
set of 27 lottery tickets that is guaranteed a win in the UK
lottery (N.B. not necessarily a profit!)

Logic Languages

Logic languages have also been around a long time, but are
much less popular than other families

Many people have difficulty using them for general purpose
programming

For logic problems, of course, they are excellent

Much used in early AI, before deep learning became the only
accepted way of solving every problem

Exercise Read about how Prolog was used (in 2023) to find a
set of 27 lottery tickets that is guaranteed a win in the UK
lottery (N.B. not necessarily a profit!)

Logic Languages

Logic languages have also been around a long time, but are
much less popular than other families

Many people have difficulty using them for general purpose
programming

For logic problems, of course, they are excellent

Much used in early AI, before deep learning became the only
accepted way of solving every problem

Exercise Read about how Prolog was used (in 2023) to find a
set of 27 lottery tickets that is guaranteed a win in the UK
lottery (N.B. not necessarily a profit!)

Logic Languages

Logic languages have also been around a long time, but are
much less popular than other families

Many people have difficulty using them for general purpose
programming

For logic problems, of course, they are excellent

Much used in early AI, before deep learning became the only
accepted way of solving every problem

Exercise Read about how Prolog was used (in 2023) to find a
set of 27 lottery tickets that is guaranteed a win in the UK
lottery (N.B. not necessarily a profit!)

Functional Languages

Purpose: general programming, symbolic programming

Examples: Lisp, Scheme, Haskell, ML, Erlang, Scala, . . .

Notable features: use of higher order functions to provide
structure and control complexity; avoidance of side-effects;
avoidance of variable update and value modification

Functions are first class: they are values in their own right and
can be passed in other functions as arguments and returned
from functions as values, sometimes even constructed at
runtime

Functional Languages

Purpose: general programming, symbolic programming

Examples: Lisp, Scheme, Haskell, ML, Erlang, Scala, . . .

Notable features: use of higher order functions to provide
structure and control complexity; avoidance of side-effects;
avoidance of variable update and value modification

Functions are first class: they are values in their own right and
can be passed in other functions as arguments and returned
from functions as values, sometimes even constructed at
runtime

Functional Languages

Datastructures are treated holistically, rather than
element-by-element

Variously called pointfree programming, tacit programming, or
combinator programming)

Suppose you want to add 1 to each element of a vector

In many languages you would use a for loop: “take the first
value, add 1; take the second value, add 1; etc.”

The functional style code is essentially: “add 1 to all values in
this vector”

Some functional style languages don’t even have loops

Functional Languages

Datastructures are treated holistically, rather than
element-by-element

Variously called pointfree programming, tacit programming, or
combinator programming)

Suppose you want to add 1 to each element of a vector

In many languages you would use a for loop: “take the first
value, add 1; take the second value, add 1; etc.”

The functional style code is essentially: “add 1 to all values in
this vector”

Some functional style languages don’t even have loops

Functional Languages

Datastructures are treated holistically, rather than
element-by-element

Variously called pointfree programming, tacit programming, or
combinator programming)

Suppose you want to add 1 to each element of a vector

In many languages you would use a for loop: “take the first
value, add 1; take the second value, add 1; etc.”

The functional style code is essentially: “add 1 to all values in
this vector”

Some functional style languages don’t even have loops

Functional Languages

Datastructures are treated holistically, rather than
element-by-element

Variously called pointfree programming, tacit programming, or
combinator programming)

Suppose you want to add 1 to each element of a vector

In many languages you would use a for loop: “take the first
value, add 1; take the second value, add 1; etc.”

The functional style code is essentially: “add 1 to all values in
this vector”

Some functional style languages don’t even have loops

Functional Languages

Datastructures are treated holistically, rather than
element-by-element

Variously called pointfree programming, tacit programming, or
combinator programming)

Suppose you want to add 1 to each element of a vector

In many languages you would use a for loop: “take the first
value, add 1; take the second value, add 1; etc.”

The functional style code is essentially: “add 1 to all values in
this vector”

Some functional style languages don’t even have loops

Functional Languages

Datastructures are treated holistically, rather than
element-by-element

Variously called pointfree programming, tacit programming, or
combinator programming)

Suppose you want to add 1 to each element of a vector

In many languages you would use a for loop: “take the first
value, add 1; take the second value, add 1; etc.”

The functional style code is essentially: “add 1 to all values in
this vector”

Some functional style languages don’t even have loops

Functional Languages
Feet

• ML: You program a structure for your foot, the gun, and the
bullet, complete with associated signatures and function
definitions. After two hours of laborious typing, forgetting of
semicolons, and searching old Comp Sci textbooks for the
definition of such phrases as “polymorphic dynamic
objective typing system”, as well as an additional hour for
brushing up on the lambda calculus, you run the program
and the interpreter tells you that the pattern-match
between your foot and the bullet is nonexhaustive. You feel
a slight tingling pain, but no bullethole appears in your foot
because your program did not allow for side-effecting
statements

Functional Languages
Feet

• Scheme: You shoot yourself in the appendage which holds
the gun with which you shoot yourself in the appendage
which holds the gun with which you shoot yourself in the
appendage which holds the gun with which you shoot
yourself in the appendage which holds. . . but none of the
other appendages are aware of this happening.

• Scheme (2): Scheme does not provide a gun as it can be
constructed from more fundamental concepts. Nor feet.

Functional Languages
Feet

• Scheme: You shoot yourself in the appendage which holds
the gun with which you shoot yourself in the appendage
which holds the gun with which you shoot yourself in the
appendage which holds the gun with which you shoot
yourself in the appendage which holds. . . but none of the
other appendages are aware of this happening.
• Scheme (2): Scheme does not provide a gun as it can be

constructed from more fundamental concepts. Nor feet.

Functional Languages
Feet

• Haskell: You spend several hours creating a new copy of
the Universe which is identical to the existing one except
your foot has a hole in it. You then hear that it can be done
more elegantly with Dyadic Functile Hyper-Arrows, but the
very act of reading some of the included sample code
causes one of your metatarsals to explode

• Haskell (2): You appear to have successfully shot yourself
in the foot, but you feel no pain. Until you look at your foot
• Erlang: whenever you shoot your foot off, you just grow

more feet
• Scala: You can’t find anyone who knows how to shoot you

in the foot

Functional Languages
Feet

• Haskell: You spend several hours creating a new copy of
the Universe which is identical to the existing one except
your foot has a hole in it. You then hear that it can be done
more elegantly with Dyadic Functile Hyper-Arrows, but the
very act of reading some of the included sample code
causes one of your metatarsals to explode
• Haskell (2): You appear to have successfully shot yourself

in the foot, but you feel no pain. Until you look at your foot

• Erlang: whenever you shoot your foot off, you just grow
more feet
• Scala: You can’t find anyone who knows how to shoot you

in the foot

Functional Languages
Feet

• Haskell: You spend several hours creating a new copy of
the Universe which is identical to the existing one except
your foot has a hole in it. You then hear that it can be done
more elegantly with Dyadic Functile Hyper-Arrows, but the
very act of reading some of the included sample code
causes one of your metatarsals to explode
• Haskell (2): You appear to have successfully shot yourself

in the foot, but you feel no pain. Until you look at your foot
• Erlang: whenever you shoot your foot off, you just grow

more feet

• Scala: You can’t find anyone who knows how to shoot you
in the foot

Functional Languages
Feet

• Haskell: You spend several hours creating a new copy of
the Universe which is identical to the existing one except
your foot has a hole in it. You then hear that it can be done
more elegantly with Dyadic Functile Hyper-Arrows, but the
very act of reading some of the included sample code
causes one of your metatarsals to explode
• Haskell (2): You appear to have successfully shot yourself

in the foot, but you feel no pain. Until you look at your foot
• Erlang: whenever you shoot your foot off, you just grow

more feet
• Scala: You can’t find anyone who knows how to shoot you

in the foot

Functional Languages

While functional languages themselves have yet to gain
widespread use, the ideas they have generated are used daily

As parallel computers become more popular there may well be
a re-examination of functional style programming as it naturally
supports parallelism

And mainstream languages like Java and C++ are adopting
functional concepts like closures, maps and iterators

These concepts are higher-level and more “natural” (closer to
the way we normally think)

Or would be if we hadn’t been taught the less natural OO and
procedural styles

Functional Languages

While functional languages themselves have yet to gain
widespread use, the ideas they have generated are used daily

As parallel computers become more popular there may well be
a re-examination of functional style programming as it naturally
supports parallelism

And mainstream languages like Java and C++ are adopting
functional concepts like closures, maps and iterators

These concepts are higher-level and more “natural” (closer to
the way we normally think)

Or would be if we hadn’t been taught the less natural OO and
procedural styles

Functional Languages

While functional languages themselves have yet to gain
widespread use, the ideas they have generated are used daily

As parallel computers become more popular there may well be
a re-examination of functional style programming as it naturally
supports parallelism

And mainstream languages like Java and C++ are adopting
functional concepts like closures, maps and iterators

These concepts are higher-level and more “natural” (closer to
the way we normally think)

Or would be if we hadn’t been taught the less natural OO and
procedural styles

Functional Languages

While functional languages themselves have yet to gain
widespread use, the ideas they have generated are used daily

As parallel computers become more popular there may well be
a re-examination of functional style programming as it naturally
supports parallelism

And mainstream languages like Java and C++ are adopting
functional concepts like closures, maps and iterators

These concepts are higher-level and more “natural” (closer to
the way we normally think)

Or would be if we hadn’t been taught the less natural OO and
procedural styles

Functional Languages

While functional languages themselves have yet to gain
widespread use, the ideas they have generated are used daily

As parallel computers become more popular there may well be
a re-examination of functional style programming as it naturally
supports parallelism

And mainstream languages like Java and C++ are adopting
functional concepts like closures, maps and iterators

These concepts are higher-level and more “natural” (closer to
the way we normally think)

Or would be if we hadn’t been taught the less natural OO and
procedural styles

Macro languages

Purpose: to improve readability of other code, abstraction,
textual manipulation

Examples: Cpp, LATEX, M4, macros in Lisp

Notable features: usually lexical (character or text) based, with
some exceptions that are syntax based (Lisp, Rust)

These languages usually say “if you see something like this,
replace it with that”; used in particular in program source code,
with the output then processed by the compiler

So, usually, code to be executed in the compilation phase,
before the main compiler, rather than at runtime

Macro languages

Purpose: to improve readability of other code, abstraction,
textual manipulation

Examples: Cpp, LATEX, M4, macros in Lisp

Notable features: usually lexical (character or text) based, with
some exceptions that are syntax based (Lisp, Rust)

These languages usually say “if you see something like this,
replace it with that”; used in particular in program source code,
with the output then processed by the compiler

So, usually, code to be executed in the compilation phase,
before the main compiler, rather than at runtime

Macro languages

Purpose: to improve readability of other code, abstraction,
textual manipulation

Examples: Cpp, LATEX, M4, macros in Lisp

Notable features: usually lexical (character or text) based, with
some exceptions that are syntax based (Lisp, Rust)

These languages usually say “if you see something like this,
replace it with that”; used in particular in program source code,
with the output then processed by the compiler

So, usually, code to be executed in the compilation phase,
before the main compiler, rather than at runtime

Macro languages
Feet

• LATEX:
\documentclass[12pt]{article}

\usepackage{latexgun,latexshoot}

\begin{document}

See how easy it is to shoot yourself in the foot? \\

\gun[leftfoot]{shoot} \\

\pain

\end{document}

Macro languages

These are used widely, in a huge variety of contexts

Commonly used in conjunction with another language, e.g., the
C preprocessor (Cpp) modifying code before passing it to the C
compiler

C code −→ C code −→ machine code
preprocessor compiler

Not often thought about in great detail, but used to great effect

Particularly conditional macros whose expansion depends on
other factors

Or when the source needs some help writing, e.g., a large
number of similar bits of code

Macro languages

These are used widely, in a huge variety of contexts

Commonly used in conjunction with another language, e.g., the
C preprocessor (Cpp) modifying code before passing it to the C
compiler

C code −→ C code −→ machine code
preprocessor compiler

Not often thought about in great detail, but used to great effect

Particularly conditional macros whose expansion depends on
other factors

Or when the source needs some help writing, e.g., a large
number of similar bits of code

Macro languages

These are used widely, in a huge variety of contexts

Commonly used in conjunction with another language, e.g., the
C preprocessor (Cpp) modifying code before passing it to the C
compiler

C code −→ C code −→ machine code
preprocessor compiler

Not often thought about in great detail, but used to great effect

Particularly conditional macros whose expansion depends on
other factors

Or when the source needs some help writing, e.g., a large
number of similar bits of code

Macro languages

These are used widely, in a huge variety of contexts

Commonly used in conjunction with another language, e.g., the
C preprocessor (Cpp) modifying code before passing it to the C
compiler

C code −→ C code −→ machine code
preprocessor compiler

Not often thought about in great detail, but used to great effect

Particularly conditional macros whose expansion depends on
other factors

Or when the source needs some help writing, e.g., a large
number of similar bits of code

Macro languages

These are used widely, in a huge variety of contexts

Commonly used in conjunction with another language, e.g., the
C preprocessor (Cpp) modifying code before passing it to the C
compiler

C code −→ C code −→ machine code
preprocessor compiler

Not often thought about in great detail, but used to great effect

Particularly conditional macros whose expansion depends on
other factors

Or when the source needs some help writing, e.g., a large
number of similar bits of code

Macro languages

These are used widely, in a huge variety of contexts

Commonly used in conjunction with another language, e.g., the
C preprocessor (Cpp) modifying code before passing it to the C
compiler

C code −→ C code −→ machine code
preprocessor compiler

Not often thought about in great detail, but used to great effect

Particularly conditional macros whose expansion depends on
other factors

Or when the source needs some help writing, e.g., a large
number of similar bits of code

Macro languages

So, in C, we can write macro code like

#ifdef SMALLINT

#define NUMBER short

#else

#define NUMBER int

#endif

In the C code following this the text token “NUMBER” is replaced
by the text “short” or “int” as appropriate

Then if we use NUMBER everywhere in our code
NUMBER x; ...
it takes only a single change to make our code use short rather
than int: very useful for source code portability between
architectures

Macro languages

So, in C, we can write macro code like

#ifdef SMALLINT

#define NUMBER short

#else

#define NUMBER int

#endif

In the C code following this the text token “NUMBER” is replaced
by the text “short” or “int” as appropriate

Then if we use NUMBER everywhere in our code
NUMBER x; ...
it takes only a single change to make our code use short rather
than int: very useful for source code portability between
architectures

Macro languages

So, in C, we can write macro code like

#ifdef SMALLINT

#define NUMBER short

#else

#define NUMBER int

#endif

In the C code following this the text token “NUMBER” is replaced
by the text “short” or “int” as appropriate

Then if we use NUMBER everywhere in our code
NUMBER x; ...
it takes only a single change to make our code use short rather
than int: very useful for source code portability between
architectures

C
#define _ F-->00||-F-OO--;

int F=00,OO=00;main(){F_OO();printf("%1.3f\n",4.*-F/OO/OO);}F_OO()

{

--_-_

--_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_

--_-_

}

An enthusiastic use of C macros by Brian Westley

Macro languages

The C preprocessor language is quite different from the C
language, and works on purely a textual level: it doesn’t
“understand” the structure of C at all

And can actually be used to preprocess any text file, not just C

In contrast to most languages, Lisp macros are not text based,
but expression based: expressions are replaced by expressions

And the macro language is Lisp itself, not a separate language:
in Lisp, data and program have identical representations, so
programs are data and data can be a program!

The full power of Lisp applies to macroexpansion: code that
manipulates code

Macro languages

The C preprocessor language is quite different from the C
language, and works on purely a textual level: it doesn’t
“understand” the structure of C at all

And can actually be used to preprocess any text file, not just C

In contrast to most languages, Lisp macros are not text based,
but expression based: expressions are replaced by expressions

And the macro language is Lisp itself, not a separate language:
in Lisp, data and program have identical representations, so
programs are data and data can be a program!

The full power of Lisp applies to macroexpansion: code that
manipulates code

Macro languages

The C preprocessor language is quite different from the C
language, and works on purely a textual level: it doesn’t
“understand” the structure of C at all

And can actually be used to preprocess any text file, not just C

In contrast to most languages, Lisp macros are not text based,
but expression based: expressions are replaced by expressions

And the macro language is Lisp itself, not a separate language:
in Lisp, data and program have identical representations, so
programs are data and data can be a program!

The full power of Lisp applies to macroexpansion: code that
manipulates code

Macro languages

The C preprocessor language is quite different from the C
language, and works on purely a textual level: it doesn’t
“understand” the structure of C at all

And can actually be used to preprocess any text file, not just C

In contrast to most languages, Lisp macros are not text based,
but expression based: expressions are replaced by expressions

And the macro language is Lisp itself, not a separate language:
in Lisp, data and program have identical representations, so
programs are data and data can be a program!

The full power of Lisp applies to macroexpansion: code that
manipulates code

Macro languages

The C preprocessor language is quite different from the C
language, and works on purely a textual level: it doesn’t
“understand” the structure of C at all

And can actually be used to preprocess any text file, not just C

In contrast to most languages, Lisp macros are not text based,
but expression based: expressions are replaced by expressions

And the macro language is Lisp itself, not a separate language:
in Lisp, data and program have identical representations, so
programs are data and data can be a program!

The full power of Lisp applies to macroexpansion: code that
manipulates code

Macro languages
LATEX

Sometimes macros are used in their own right, e.g., LATEX, the
typesetting language is macro based

These slides are written in LATEX

\begin{frame}

\frametitle{Macro languages}

\framesubtitle{\LaTeX}

Sometimes macros are used in their own right, e.g.,

\LaTeX, the typesetting language is macro based

\pc{These slides are written in \LaTeX}

\end{frame}

Macro languages
LATEX

Sometimes macros are used in their own right, e.g., LATEX, the
typesetting language is macro based

These slides are written in LATEX

\begin{frame}

\frametitle{Macro languages}

\framesubtitle{\LaTeX}

Sometimes macros are used in their own right, e.g.,

\LaTeX, the typesetting language is macro based

\pc{These slides are written in \LaTeX}

\end{frame}

Macro languages
LATEX

Sometimes macros are used in their own right, e.g., LATEX, the
typesetting language is macro based

These slides are written in LATEX

\begin{frame}

\frametitle{Macro languages}

\framesubtitle{\LaTeX}

Sometimes macros are used in their own right, e.g.,

\LaTeX, the typesetting language is macro based

\pc{These slides are written in \LaTeX}

\end{frame}

Macro languages
LATEX

Here the basic datatype is text and you define macros as
convenient shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this (or you
use a library definition)

And if you want to change the layout, you just change the
\chapter macro

Exercise Compare with WYSIWYG word processors

Macro languages
LATEX

Here the basic datatype is text and you define macros as
convenient shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this (or you
use a library definition)

And if you want to change the layout, you just change the
\chapter macro

Exercise Compare with WYSIWYG word processors

Macro languages
LATEX

Here the basic datatype is text and you define macros as
convenient shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this (or you
use a library definition)

And if you want to change the layout, you just change the
\chapter macro

Exercise Compare with WYSIWYG word processors

Macro languages
LATEX

Here the basic datatype is text and you define macros as
convenient shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this (or you
use a library definition)

And if you want to change the layout, you just change the
\chapter macro

Exercise Compare with WYSIWYG word processors

Macro languages
LATEX

Here the basic datatype is text and you define macros as
convenient shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this (or you
use a library definition)

And if you want to change the layout, you just change the
\chapter macro

Exercise Compare with WYSIWYG word processors

Scripting Languages

Purpose: control of other elements of a system, e.g., programs,
“glue” to join elements together

Examples: DOS batch, sh, Python, Sed, Perl, Ruby,
JavaScript . . .

Notable features: not particularly good at classical number
crunching; generally lots of string processing and process
manipulation

They are called “scripts” as they are (were originally) lists of
things to be done

Often, but not exclusively, interpreted rather than compiled

Scripting Languages

Purpose: control of other elements of a system, e.g., programs,
“glue” to join elements together

Examples: DOS batch, sh, Python, Sed, Perl, Ruby,
JavaScript . . .

Notable features: not particularly good at classical number
crunching; generally lots of string processing and process
manipulation

They are called “scripts” as they are (were originally) lists of
things to be done

Often, but not exclusively, interpreted rather than compiled

Scripting Languages

Purpose: control of other elements of a system, e.g., programs,
“glue” to join elements together

Examples: DOS batch, sh, Python, Sed, Perl, Ruby,
JavaScript . . .

Notable features: not particularly good at classical number
crunching; generally lots of string processing and process
manipulation

They are called “scripts” as they are (were originally) lists of
things to be done

Often, but not exclusively, interpreted rather than compiled

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot

• Sh, csh, bash: You can’t remember the syntax for anything
so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl
• Perl: You shoot yourself in the foot, but nobody can

understand how you did it. Six months later, neither can
you
• Ruby: Your foot is ready to be shot in roughly five minutes,

but you just can’t find anywhere to shoot it
• JavaScript: You’ve perfected a robust, rich user experience

for shooting yourself in the foot. You then find that bullets
are disabled on your gun

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot
• Sh, csh, bash: You can’t remember the syntax for anything

so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl

• Perl: You shoot yourself in the foot, but nobody can
understand how you did it. Six months later, neither can
you
• Ruby: Your foot is ready to be shot in roughly five minutes,

but you just can’t find anywhere to shoot it
• JavaScript: You’ve perfected a robust, rich user experience

for shooting yourself in the foot. You then find that bullets
are disabled on your gun

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot
• Sh, csh, bash: You can’t remember the syntax for anything

so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl
• Perl: You shoot yourself in the foot, but nobody can

understand how you did it. Six months later, neither can
you

• Ruby: Your foot is ready to be shot in roughly five minutes,
but you just can’t find anywhere to shoot it
• JavaScript: You’ve perfected a robust, rich user experience

for shooting yourself in the foot. You then find that bullets
are disabled on your gun

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot
• Sh, csh, bash: You can’t remember the syntax for anything

so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl
• Perl: You shoot yourself in the foot, but nobody can

understand how you did it. Six months later, neither can
you
• Ruby: Your foot is ready to be shot in roughly five minutes,

but you just can’t find anywhere to shoot it

• JavaScript: You’ve perfected a robust, rich user experience
for shooting yourself in the foot. You then find that bullets
are disabled on your gun

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot
• Sh, csh, bash: You can’t remember the syntax for anything

so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl
• Perl: You shoot yourself in the foot, but nobody can

understand how you did it. Six months later, neither can
you
• Ruby: Your foot is ready to be shot in roughly five minutes,

but you just can’t find anywhere to shoot it
• JavaScript: You’ve perfected a robust, rich user experience

for shooting yourself in the foot. You then find that bullets
are disabled on your gun

Scripting Languages

Also a widely used family

The original scripts were the job control languages for the early
mainframes

For example, IBM’s JCL was used to describe a list of programs
to be loaded and run: recall batch processing

To compile and run them, you (the computer) just follow the
script

Scripting Languages

Also a widely used family

The original scripts were the job control languages for the early
mainframes

For example, IBM’s JCL was used to describe a list of programs
to be loaded and run: recall batch processing

To compile and run them, you (the computer) just follow the
script

Scripting Languages

Also a widely used family

The original scripts were the job control languages for the early
mainframes

For example, IBM’s JCL was used to describe a list of programs
to be loaded and run: recall batch processing

To compile and run them, you (the computer) just follow the
script

Scripting Languages

Also a widely used family

The original scripts were the job control languages for the early
mainframes

For example, IBM’s JCL was used to describe a list of programs
to be loaded and run: recall batch processing

To compile and run them, you (the computer) just follow the
script

Scripting Languages
Feet

• JCL: You send your foot down to MIS with a 4000-page
document explaining how you want it to be shot. Three
years later, your foot comes back deep-fried

Scripting Languages
Feet

Job control languages are not a thing of the past: modern large
supercomputers are typically still managed using job scripts

Exercise Read about PBS and SLURM

Scripting Languages
Feet

Job control languages are not a thing of the past: modern large
supercomputers are typically still managed using job scripts

Exercise Read about PBS and SLURM

Scripting Languages
Sh

The Unix command line language, originally sh (the Bourne
Shell) and variants such as csh (C shell), lately bash (the
Bourne Again shell)

Simple textual lists of things (programs) to be done

#!/bin/sh

setxkbmap -option "compose:menu" -option "ctrl:nocaps"

dispwin -L

["$XAUTHORITY"] && cp -f "$XAUTHORITY" ~/.Xauthority

Scripting Languages
Sh

The Unix command line language, originally sh (the Bourne
Shell) and variants such as csh (C shell), lately bash (the
Bourne Again shell)

Simple textual lists of things (programs) to be done

#!/bin/sh

setxkbmap -option "compose:menu" -option "ctrl:nocaps"

dispwin -L

["$XAUTHORITY"] && cp -f "$XAUTHORITY" ~/.Xauthority

Scripting Languages
Sh

The Unix command line language, originally sh (the Bourne
Shell) and variants such as csh (C shell), lately bash (the
Bourne Again shell)

Simple textual lists of things (programs) to be done

#!/bin/sh

setxkbmap -option "compose:menu" -option "ctrl:nocaps"

dispwin -L

["$XAUTHORITY"] && cp -f "$XAUTHORITY" ~/.Xauthority

Scripting Languages
Sh

Shell scripts are widely used to automate repetitive and
complex tasks

Originally reasonably simple as languages but they have grown
more complex in their abilities over time

Crucially, they do not require a GUI so can be deployed
automatically over large numbers of machines

Somewhat low-level, so not so good for more complex tasks, or
less complex programmers

Scripting Languages
Sh

Shell scripts are widely used to automate repetitive and
complex tasks

Originally reasonably simple as languages but they have grown
more complex in their abilities over time

Crucially, they do not require a GUI so can be deployed
automatically over large numbers of machines

Somewhat low-level, so not so good for more complex tasks, or
less complex programmers

Scripting Languages
Sh

Shell scripts are widely used to automate repetitive and
complex tasks

Originally reasonably simple as languages but they have grown
more complex in their abilities over time

Crucially, they do not require a GUI so can be deployed
automatically over large numbers of machines

Somewhat low-level, so not so good for more complex tasks, or
less complex programmers

Scripting Languages
Sh

Shell scripts are widely used to automate repetitive and
complex tasks

Originally reasonably simple as languages but they have grown
more complex in their abilities over time

Crucially, they do not require a GUI so can be deployed
automatically over large numbers of machines

Somewhat low-level, so not so good for more complex tasks, or
less complex programmers

