
Scripting Languages
Sed

Example: Sed. A very simple scripting language, capable of
just one task (“do one thing, but do it well”)

String manipulation: sed is a stream editor

Reads files one line at a time (as a stream) and edits them, one
line at a time, according to given rules

sed -e ’s/hello/goodbye/’
Substitutes goodbye for occurrences of hello in its input

Scripting Languages
Sed

Example: Sed. A very simple scripting language, capable of
just one task (“do one thing, but do it well”)

String manipulation: sed is a stream editor

Reads files one line at a time (as a stream) and edits them, one
line at a time, according to given rules

sed -e ’s/hello/goodbye/’
Substitutes goodbye for occurrences of hello in its input

Scripting Languages
Sed

Example: Sed. A very simple scripting language, capable of
just one task (“do one thing, but do it well”)

String manipulation: sed is a stream editor

Reads files one line at a time (as a stream) and edits them, one
line at a time, according to given rules

sed -e ’s/hello/goodbye/’
Substitutes goodbye for occurrences of hello in its input

Scripting Languages
Sed

Example: Sed. A very simple scripting language, capable of
just one task (“do one thing, but do it well”)

String manipulation: sed is a stream editor

Reads files one line at a time (as a stream) and edits them, one
line at a time, according to given rules

sed -e ’s/hello/goodbye/’
Substitutes goodbye for occurrences of hello in its input

Scripting Languages
Sed

Uses regular expressions for patterns: e.g., hello.*world
matches all strings of characters starting with hello and ending
with world

Why not just use a regular editor?

Firstly, it doesn’t use a GUI, and so can be automated

Secondly, it can edit files too large to fit into memory all at once

Or streamed data, so you don’t have it in a file

Scripting Languages
Sed

Uses regular expressions for patterns: e.g., hello.*world
matches all strings of characters starting with hello and ending
with world

Why not just use a regular editor?

Firstly, it doesn’t use a GUI, and so can be automated

Secondly, it can edit files too large to fit into memory all at once

Or streamed data, so you don’t have it in a file

Scripting Languages
Sed

Uses regular expressions for patterns: e.g., hello.*world
matches all strings of characters starting with hello and ending
with world

Why not just use a regular editor?

Firstly, it doesn’t use a GUI, and so can be automated

Secondly, it can edit files too large to fit into memory all at once

Or streamed data, so you don’t have it in a file

Scripting Languages
Sed

Uses regular expressions for patterns: e.g., hello.*world
matches all strings of characters starting with hello and ending
with world

Why not just use a regular editor?

Firstly, it doesn’t use a GUI, and so can be automated

Secondly, it can edit files too large to fit into memory all at once

Or streamed data, so you don’t have it in a file

Scripting Languages
Sed

Uses regular expressions for patterns: e.g., hello.*world
matches all strings of characters starting with hello and ending
with world

Why not just use a regular editor?

Firstly, it doesn’t use a GUI, and so can be automated

Secondly, it can edit files too large to fit into memory all at once

Or streamed data, so you don’t have it in a file

Scripting Languages
Sed

Sed is often used as a component in shell scripts: you don’t
have to sit down and drive a text editor by hand

But it is limited to line-by-line editing

More general is awk, but better is Perl

Scripting Languages
Sed

Sed is often used as a component in shell scripts: you don’t
have to sit down and drive a text editor by hand

But it is limited to line-by-line editing

More general is awk, but better is Perl

Scripting Languages
Sed

Sed is often used as a component in shell scripts: you don’t
have to sit down and drive a text editor by hand

But it is limited to line-by-line editing

More general is awk, but better is Perl

Scripting Languages
Perl

Perl was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching in text

It is also procedural, has first class functions, has objects and
so on

The syntax is based on the usual C/Java/whatever, but with a
few features

We’ll have a quick look at some Perl code as an exercise in
looking at an unfamiliar language

Scripting Languages
Perl

Perl was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching in text

It is also procedural, has first class functions, has objects and
so on

The syntax is based on the usual C/Java/whatever, but with a
few features

We’ll have a quick look at some Perl code as an exercise in
looking at an unfamiliar language

Scripting Languages
Perl

Perl was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching in text

It is also procedural, has first class functions, has objects and
so on

The syntax is based on the usual C/Java/whatever, but with a
few features

We’ll have a quick look at some Perl code as an exercise in
looking at an unfamiliar language

Scripting Languages
Perl

Perl was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching in text

It is also procedural, has first class functions, has objects and
so on

The syntax is based on the usual C/Java/whatever, but with a
few features

We’ll have a quick look at some Perl code as an exercise in
looking at an unfamiliar language

Scripting Languages
Perl

Perl was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching in text

It is also procedural, has first class functions, has objects and
so on

The syntax is based on the usual C/Java/whatever, but with a
few features

We’ll have a quick look at some Perl code as an exercise in
looking at an unfamiliar language

Scripting Languages
Perl

Perl was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching in text

It is also procedural, has first class functions, has objects and
so on

The syntax is based on the usual C/Java/whatever, but with a
few features

We’ll have a quick look at some Perl code as an exercise in
looking at an unfamiliar language

Scripting Languages
Perl

open IN, ’<’, ’infile’;

open OUT, ’>outfile’;

$count = 0;

while (<IN>) {

s/world/everybody/ if (/hello/);

print OUT;

$count++;

}

close IN;

close OUT;

print "$count lines\n";

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename

• IN: filestream variables are syntactically different from
normal variables
• $count: scalar (single value) variable names are prefixed

by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables

• $count: scalar (single value) variable names are prefixed
by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file

• it assigns to the variable $

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name
• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $
• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called
• and false at end of file
• it assigns to the variable $

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)
• // for pattern matching; in this case it looks to see if the

default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)
• $count++; lots of C-like features (as are the {} and ; and
while, etc.)

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)

• // for pattern matching; in this case it looks to see if the
default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)
• $count++; lots of C-like features (as are the {} and ; and
while, etc.)

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)
• // for pattern matching; in this case it looks to see if the

default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)
• $count++; lots of C-like features (as are the {} and ; and
while, etc.)

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)
• // for pattern matching; in this case it looks to see if the

default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)

• $count++; lots of C-like features (as are the {} and ; and
while, etc.)

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)
• // for pattern matching; in this case it looks to see if the

default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)
• $count++; lots of C-like features (as are the {} and ; and
while, etc.)

Scripting Languages
Perl

• undeclared variables: just using a variable is enough to tell
Perl a variable exists; though you can declare them if you
want

• untyped variables: a variable can hold numbers and strings
and other types; so ++ has first to check if the value is a
number before adding 1 (or a string containing a number,
which it then converts to a number)
• flexibility over () around function arguments

Scripting Languages
Perl

• undeclared variables: just using a variable is enough to tell
Perl a variable exists; though you can declare them if you
want
• untyped variables: a variable can hold numbers and strings

and other types; so ++ has first to check if the value is a
number before adding 1 (or a string containing a number,
which it then converts to a number)

• flexibility over () around function arguments

Scripting Languages
Perl

• undeclared variables: just using a variable is enough to tell
Perl a variable exists; though you can declare them if you
want
• untyped variables: a variable can hold numbers and strings

and other types; so ++ has first to check if the value is a
number before adding 1 (or a string containing a number,
which it then converts to a number)
• flexibility over () around function arguments

Scripting Languages
Perl

• strings are both single and double quoted

• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline
• "The count is $count" sticks the current value of
$count into the string at that point
• and a lot more

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline
• "The count is $count" sticks the current value of
$count into the string at that point
• and a lot more

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline

• "The count is $count" sticks the current value of
$count into the string at that point
• and a lot more

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline
• "The count is $count" sticks the current value of
$count into the string at that point

• and a lot more

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline
• "The count is $count" sticks the current value of
$count into the string at that point
• and a lot more

Scripting Languages
Perl

Exercise Read about Perl 6, which was such a large step
forward(?) from Perl 5 they changed the name of the language
to Raku

But then came Perl 7, which reverted (mostly) back to the old
ways

Exercise Compare
$count = "99"; $count++;
and
$count = "cat"; $count++;

Scripting Languages
Perl

Exercise Read about Perl 6, which was such a large step
forward(?) from Perl 5 they changed the name of the language
to Raku

But then came Perl 7, which reverted (mostly) back to the old
ways

Exercise Compare
$count = "99"; $count++;
and
$count = "cat"; $count++;

Scripting Languages
Perl

Exercise Read about Perl 6, which was such a large step
forward(?) from Perl 5 they changed the name of the language
to Raku

But then came Perl 7, which reverted (mostly) back to the old
ways

Exercise Compare
$count = "99"; $count++;
and
$count = "cat"; $count++;

Scripting Languages
Perl

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

Exercise Read about PHP, a language derived from Perl for
specifically generating Web pages

Scripting Languages
Perl

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

Exercise Read about PHP, a language derived from Perl for
specifically generating Web pages

Scripting Languages
Perl

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

Exercise Read about PHP, a language derived from Perl for
specifically generating Web pages

Scripting Languages
Perl

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

Exercise Read about PHP, a language derived from Perl for
specifically generating Web pages

Scripting Languages
Python

Python is an interesting case as it often isn’t thought of as a
scripting language any more

Like many languages, it has grown and adapted over the years

But, still, it not terribly well suited for pure computation, e.g.,
numerics

Scripting Languages
Python

Python is an interesting case as it often isn’t thought of as a
scripting language any more

Like many languages, it has grown and adapted over the years

But, still, it not terribly well suited for pure computation, e.g.,
numerics

Scripting Languages
Python

Python is an interesting case as it often isn’t thought of as a
scripting language any more

Like many languages, it has grown and adapted over the years

But, still, it not terribly well suited for pure computation, e.g.,
numerics

Scripting Languages
Python

But what about the thousands of people who write Python code
to do numerical analysis and machine learning?

They are actually using Python as a front end to use library
code written in C — very little of the execution time is spent
running the Python code wrapper

So they are using Python primarily as a way of controlling C
code!

That is, as a scripting language

Exercise Compare Python features with Perl features

Scripting Languages
Python

But what about the thousands of people who write Python code
to do numerical analysis and machine learning?

They are actually using Python as a front end to use library
code written in C — very little of the execution time is spent
running the Python code wrapper

So they are using Python primarily as a way of controlling C
code!

That is, as a scripting language

Exercise Compare Python features with Perl features

Scripting Languages
Python

But what about the thousands of people who write Python code
to do numerical analysis and machine learning?

They are actually using Python as a front end to use library
code written in C — very little of the execution time is spent
running the Python code wrapper

So they are using Python primarily as a way of controlling C
code!

That is, as a scripting language

Exercise Compare Python features with Perl features

Scripting Languages
Python

But what about the thousands of people who write Python code
to do numerical analysis and machine learning?

They are actually using Python as a front end to use library
code written in C — very little of the execution time is spent
running the Python code wrapper

So they are using Python primarily as a way of controlling C
code!

That is, as a scripting language

Exercise Compare Python features with Perl features

Scripting Languages
Python

But what about the thousands of people who write Python code
to do numerical analysis and machine learning?

They are actually using Python as a front end to use library
code written in C — very little of the execution time is spent
running the Python code wrapper

So they are using Python primarily as a way of controlling C
code!

That is, as a scripting language

Exercise Compare Python features with Perl features

Scripting Languages
JavaScript

JavaScript is another case that isn’t usually thought of as a
scripting language any more

Originally intended to be a scripting language to manage Web
page content, it is now more likely to be thought of as a
special-purpose language to enable dynamic Web content

Web applications are coded using JavaScript

Scripting Languages
JavaScript

JavaScript is another case that isn’t usually thought of as a
scripting language any more

Originally intended to be a scripting language to manage Web
page content, it is now more likely to be thought of as a
special-purpose language to enable dynamic Web content

Web applications are coded using JavaScript

Scripting Languages
JavaScript

JavaScript is another case that isn’t usually thought of as a
scripting language any more

Originally intended to be a scripting language to manage Web
page content, it is now more likely to be thought of as a
special-purpose language to enable dynamic Web content

Web applications are coded using JavaScript

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are very different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves

But you shouldn’t take this analogy too far

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are very different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves

But you shouldn’t take this analogy too far

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are very different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves

But you shouldn’t take this analogy too far

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are very different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves

But you shouldn’t take this analogy too far

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are very different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves

But you shouldn’t take this analogy too far

Scripting Languages
Aside

Java and JavaScript is a good example of a pair of languages
that look fairly similar, but behave very differently

While Scheme and JavaScript is a good example of a pair of
languages that look very different, but behave alike(ish)

(define (inc n) (+ n 1))
function inc(n) { return n+1; }

We need to be aware of both syntax and semantics when
thinking about programming languages

Scripting Languages
Aside

Java and JavaScript is a good example of a pair of languages
that look fairly similar, but behave very differently

While Scheme and JavaScript is a good example of a pair of
languages that look very different, but behave alike(ish)

(define (inc n) (+ n 1))
function inc(n) { return n+1; }

We need to be aware of both syntax and semantics when
thinking about programming languages

Scripting Languages
Aside

Java and JavaScript is a good example of a pair of languages
that look fairly similar, but behave very differently

While Scheme and JavaScript is a good example of a pair of
languages that look very different, but behave alike(ish)

(define (inc n) (+ n 1))
function inc(n) { return n+1; }

We need to be aware of both syntax and semantics when
thinking about programming languages

Scripting Languages
Aside

Java and JavaScript is a good example of a pair of languages
that look fairly similar, but behave very differently

While Scheme and JavaScript is a good example of a pair of
languages that look very different, but behave alike(ish)

(define (inc n) (+ n 1))
function inc(n) { return n+1; }

We need to be aware of both syntax and semantics when
thinking about programming languages

Scripting Languages
JavaScript

JavaScript is more properly called ECMAScript as the name
“JavaScript” is trademarked by Oracle

This is a standards document (not a programming language in
itself!) with several close-but-not-wholly-compatible
implementations

• JavaScript: Mozilla, Google Chrome, Safari, etc.
• JScript: Microsoft
• ActionScript: Adobe

Ecma: formerly European Computer Manufacturers
Association, now just “Ecma International”, is a standards body

Scripting Languages
JavaScript

JavaScript is more properly called ECMAScript as the name
“JavaScript” is trademarked by Oracle

This is a standards document (not a programming language in
itself!) with several close-but-not-wholly-compatible
implementations

• JavaScript: Mozilla, Google Chrome, Safari, etc.
• JScript: Microsoft
• ActionScript: Adobe

Ecma: formerly European Computer Manufacturers
Association, now just “Ecma International”, is a standards body

Scripting Languages
JavaScript

JavaScript is more properly called ECMAScript as the name
“JavaScript” is trademarked by Oracle

This is a standards document (not a programming language in
itself!) with several close-but-not-wholly-compatible
implementations

• JavaScript: Mozilla, Google Chrome, Safari, etc.
• JScript: Microsoft
• ActionScript: Adobe

Ecma: formerly European Computer Manufacturers
Association, now just “Ecma International”, is a standards body

Scripting Languages
JavaScript

JavaScript is more properly called ECMAScript as the name
“JavaScript” is trademarked by Oracle

This is a standards document (not a programming language in
itself!) with several close-but-not-wholly-compatible
implementations

• JavaScript: Mozilla, Google Chrome, Safari, etc.
• JScript: Microsoft
• ActionScript: Adobe

Ecma: formerly European Computer Manufacturers
Association, now just “Ecma International”, is a standards body

Scripting Languages
JavaScript

function getdoc()

{

var input = document.getElementById("num");

var num = input.value;

if (parseInt(num) == num && num > 0 && num < 5000) {

document.location = "http://www.rfc-editor.org/rfc/rfc"

+ num + ".txt";

}

else {

alert("Not a valid RFC number!");

input.value = "";

}

return false;

}

Scripting Languages
JavaScript

• functions declared by function, no type annotations

• variables declared by var or let, no type annotations
• any variable can hold items of any type
• syntax reminiscent of Java (and C and so on)

Scripting Languages
JavaScript

• functions declared by function, no type annotations
• variables declared by var or let, no type annotations

• any variable can hold items of any type
• syntax reminiscent of Java (and C and so on)

Scripting Languages
JavaScript

• functions declared by function, no type annotations
• variables declared by var or let, no type annotations
• any variable can hold items of any type

• syntax reminiscent of Java (and C and so on)

Scripting Languages
JavaScript

• functions declared by function, no type annotations
• variables declared by var or let, no type annotations
• any variable can hold items of any type
• syntax reminiscent of Java (and C and so on)

Scripting Languages
JavaScript

JavaScript is easy to start learning and use, and is good for
prototyping code

Though as you learn more, you discover that it has some
frighteningly complex features

Projects using JavaScript often prescribe a set of allowed
features to manage the excess of dynamic behaviour

Exercise Have a look at asm.js, a subset of JavaScript that
limited the worst excesses of JavaScript (now deprecated)

Scripting Languages
JavaScript

JavaScript is easy to start learning and use, and is good for
prototyping code

Though as you learn more, you discover that it has some
frighteningly complex features

Projects using JavaScript often prescribe a set of allowed
features to manage the excess of dynamic behaviour

Exercise Have a look at asm.js, a subset of JavaScript that
limited the worst excesses of JavaScript (now deprecated)

Scripting Languages
JavaScript

JavaScript is easy to start learning and use, and is good for
prototyping code

Though as you learn more, you discover that it has some
frighteningly complex features

Projects using JavaScript often prescribe a set of allowed
features to manage the excess of dynamic behaviour

Exercise Have a look at asm.js, a subset of JavaScript that
limited the worst excesses of JavaScript (now deprecated)

Scripting Languages
JavaScript

JavaScript is easy to start learning and use, and is good for
prototyping code

Though as you learn more, you discover that it has some
frighteningly complex features

Projects using JavaScript often prescribe a set of allowed
features to manage the excess of dynamic behaviour

Exercise Have a look at asm.js, a subset of JavaScript that
limited the worst excesses of JavaScript (now deprecated)

Scripting Languages
JavaScript

JavaScript is OO, but in a very different way from other
languages, particularly Java

We shall be talking more about JavaScript when we examine
OO in detail, but, for example, JavaScript does not have classes

Scripting Languages
JavaScript

JavaScript is OO, but in a very different way from other
languages, particularly Java

We shall be talking more about JavaScript when we examine
OO in detail, but, for example, JavaScript does not have classes

Scripting Languages

JavaScript books; source: Filip Sufitchi

Scripting Languages
Aside

If you don’t like JavaScript, an emerging approach to
programming the Web is Web Assembly (WASM), a low level
machine-code-like language that can be executed at “near
native” speeds in the browser

It is precompiled to a kind of machine-independent assembly
code before delivery to the browser and this much faster to
parse and then execute than JavaScript

It can be further compiled down to the destination machine
code as fast as you can download it

source −→ WASM −→ machine code
compiler delivery compiler executed

Scripting Languages
Aside

If you don’t like JavaScript, an emerging approach to
programming the Web is Web Assembly (WASM), a low level
machine-code-like language that can be executed at “near
native” speeds in the browser

It is precompiled to a kind of machine-independent assembly
code before delivery to the browser and this much faster to
parse and then execute than JavaScript

It can be further compiled down to the destination machine
code as fast as you can download it

source −→ WASM −→ machine code
compiler delivery compiler executed

Scripting Languages
Aside

If you don’t like JavaScript, an emerging approach to
programming the Web is Web Assembly (WASM), a low level
machine-code-like language that can be executed at “near
native” speeds in the browser

It is precompiled to a kind of machine-independent assembly
code before delivery to the browser and this much faster to
parse and then execute than JavaScript

It can be further compiled down to the destination machine
code as fast as you can download it

source −→ WASM −→ machine code
compiler delivery compiler executed

Scripting Languages
Aside

If you don’t like JavaScript, an emerging approach to
programming the Web is Web Assembly (WASM), a low level
machine-code-like language that can be executed at “near
native” speeds in the browser

It is precompiled to a kind of machine-independent assembly
code before delivery to the browser and this much faster to
parse and then execute than JavaScript

It can be further compiled down to the destination machine
code as fast as you can download it

source −→ WASM −→ machine code
compiler delivery compiler executed

Scripting Languages
Aside

Initial experiments with JavaScript to WASM compilers
experiments are very promising

But, importantly, other languages (such as Rust and C++) can
compile to WASM, too

Large C++ programs, such as ray tracers and games, have
been successfully compiled to WASM and can now run within a
browser

Exercise This that a good idea?

The future of the Web may not be with JavaScript!

Scripting Languages
Aside

Initial experiments with JavaScript to WASM compilers
experiments are very promising

But, importantly, other languages (such as Rust and C++) can
compile to WASM, too

Large C++ programs, such as ray tracers and games, have
been successfully compiled to WASM and can now run within a
browser

Exercise This that a good idea?

The future of the Web may not be with JavaScript!

Scripting Languages
Aside

Initial experiments with JavaScript to WASM compilers
experiments are very promising

But, importantly, other languages (such as Rust and C++) can
compile to WASM, too

Large C++ programs, such as ray tracers and games, have
been successfully compiled to WASM and can now run within a
browser

Exercise This that a good idea?

The future of the Web may not be with JavaScript!

Scripting Languages
Aside

Initial experiments with JavaScript to WASM compilers
experiments are very promising

But, importantly, other languages (such as Rust and C++) can
compile to WASM, too

Large C++ programs, such as ray tracers and games, have
been successfully compiled to WASM and can now run within a
browser

Exercise This that a good idea?

The future of the Web may not be with JavaScript!

Scripting Languages
Aside

Initial experiments with JavaScript to WASM compilers
experiments are very promising

But, importantly, other languages (such as Rust and C++) can
compile to WASM, too

Large C++ programs, such as ray tracers and games, have
been successfully compiled to WASM and can now run within a
browser

Exercise This that a good idea?

The future of the Web may not be with JavaScript!

Event Driven Languages

Purpose: interactive systems

Examples: Visual Basic, Simula, SPICE, Java Swing, Tcl/Tk,
Qt, GTK, . . .

NB: most of these are event-driven libraries used by existing
languages

Notable features: based on the idea of having code executed
as a consequence of something (an event) happening, rather
than in some pre-specified order

Event Driven Languages
Feet

• Visual Basic: You do a Google search on how to shoot
yourself in the foot. You find seventeen completely different
ways to do it, none of which are properly structured. You
paste the first example into the IDE and compile. It
brushes your teeth

• Visual Basic (2): You’ll really only appear to have shot
yourself in the foot, but you’ll have so much fun doing it that
you won’t care.

Event Driven Languages
Feet

• Visual Basic: You do a Google search on how to shoot
yourself in the foot. You find seventeen completely different
ways to do it, none of which are properly structured. You
paste the first example into the IDE and compile. It
brushes your teeth
• Visual Basic (2): You’ll really only appear to have shot

yourself in the foot, but you’ll have so much fun doing it that
you won’t care.

Event Driven Languages

Perhaps more used as an approach to programming, rather
than a family of languages

Lots of general purpose languages can be used in the event
driven style, though there are a few languages specifically
designed for this, e.g., Simula

Widely used to support GUIs and other interfaces and control
systems, e.g., embedded controllers

E.g., Facebook’s React library

Event Driven Languages

Perhaps more used as an approach to programming, rather
than a family of languages

Lots of general purpose languages can be used in the event
driven style, though there are a few languages specifically
designed for this, e.g., Simula

Widely used to support GUIs and other interfaces and control
systems, e.g., embedded controllers

E.g., Facebook’s React library

Event Driven Languages

Perhaps more used as an approach to programming, rather
than a family of languages

Lots of general purpose languages can be used in the event
driven style, though there are a few languages specifically
designed for this, e.g., Simula

Widely used to support GUIs and other interfaces and control
systems, e.g., embedded controllers

E.g., Facebook’s React library

Event Driven Languages

Perhaps more used as an approach to programming, rather
than a family of languages

Lots of general purpose languages can be used in the event
driven style, though there are a few languages specifically
designed for this, e.g., Simula

Widely used to support GUIs and other interfaces and control
systems, e.g., embedded controllers

E.g., Facebook’s React library

Event Driven Languages

Typically the code contains a main loop that waits for events
(key presses, mouse clicks, temperature limits reached, data
packets arriving, clock timeouts, etc.) which then chooses
which chunk of code (event handler) to run in response

while (FAMNextEvent(&fc, &fe)) {

if (fe.code == FAMExists || fe.code == FAMEndExist)

continue;

t = time(NULL);

tm = localtime(&t);

strftime(buf, 32, "%H:%M:%S", tm);

printf("%s %s: %s\n", buf, trim(fe.filename),

event[fe.code]);

}

Event Driven Languages

Typically the code contains a main loop that waits for events
(key presses, mouse clicks, temperature limits reached, data
packets arriving, clock timeouts, etc.) which then chooses
which chunk of code (event handler) to run in response

while (FAMNextEvent(&fc, &fe)) {

if (fe.code == FAMExists || fe.code == FAMEndExist)

continue;

t = time(NULL);

tm = localtime(&t);

strftime(buf, 32, "%H:%M:%S", tm);

printf("%s %s: %s\n", buf, trim(fe.filename),

event[fe.code]);

}

Event Driven Languages

The event driven style is very much like interrupt processing

Code has to be written with the understanding that you don’t
know in what order the parts of the code will be executed

Widely used in interactive applications

Also very important in simulation

Event Driven Languages

The event driven style is very much like interrupt processing

Code has to be written with the understanding that you don’t
know in what order the parts of the code will be executed

Widely used in interactive applications

Also very important in simulation

Event Driven Languages

The event driven style is very much like interrupt processing

Code has to be written with the understanding that you don’t
know in what order the parts of the code will be executed

Widely used in interactive applications

Also very important in simulation

Event Driven Languages

The event driven style is very much like interrupt processing

Code has to be written with the understanding that you don’t
know in what order the parts of the code will be executed

Widely used in interactive applications

Also very important in simulation

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

