
Dataflow Languages

Purpose: concurrent or stream programming

Examples: SISAL, Strand, spreadsheets

Notable features: data driven computation

Dataflow Languages

Normally you think of a program as a sequence of operations to
be done on some data

A dataflow language takes the view that the data should be the
things of interest, and so the data drives the computations

For example in x = y + z the addition can only be done when
y and z have values

Dataflow Languages

Normally you think of a program as a sequence of operations to
be done on some data

A dataflow language takes the view that the data should be the
things of interest, and so the data drives the computations

For example in x = y + z the addition can only be done when
y and z have values

Dataflow Languages

Normally you think of a program as a sequence of operations to
be done on some data

A dataflow language takes the view that the data should be the
things of interest, and so the data drives the computations

For example in x = y + z the addition can only be done when
y and z have values

Dataflow Languages

So within

y = 1;

x = y + z;

z = 2;

the addition can only be executed after the assignments to both
y and z, regardless of the order these statements happen to be
written

Dataflow Languages

This may sound weird, but this is precisely how spreadsheets
work

Values propagate across cells by executing those rules that
apply at any given point in time

Regardless of the actual layout of the cells

Dataflow Languages

This may sound weird, but this is precisely how spreadsheets
work

Values propagate across cells by executing those rules that
apply at any given point in time

Regardless of the actual layout of the cells

Dataflow Languages

This may sound weird, but this is precisely how spreadsheets
work

Values propagate across cells by executing those rules that
apply at any given point in time

Regardless of the actual layout of the cells

Dataflow Languages

Outside spreadsheets there has not been a wide uptake of this
approach, though it should be noted that event-driven
programming is closely related

There has been some experimentation in the area of parallel
programming: note that applicable computations can be
executed in parallel

Exercise Deep Learning in AI has been called a dataflow
approach. Read about this

Dataflow Languages

Outside spreadsheets there has not been a wide uptake of this
approach, though it should be noted that event-driven
programming is closely related

There has been some experimentation in the area of parallel
programming: note that applicable computations can be
executed in parallel

Exercise Deep Learning in AI has been called a dataflow
approach. Read about this

Dataflow Languages

Outside spreadsheets there has not been a wide uptake of this
approach, though it should be noted that event-driven
programming is closely related

There has been some experimentation in the area of parallel
programming: note that applicable computations can be
executed in parallel

Exercise Deep Learning in AI has been called a dataflow
approach. Read about this

Dataflow Languages
Feet

• Excel: You don’t need to shoot yourself in the foot because
a macro virus has already done so

Markup Languages

Purpose: description of objects; often, but not exclusively,
documents

Examples: HTML, XML, SGML, CSS, nroff, LATEX, . . .

Notable features: use of notation, e.g., within a document, to
describe elements of the document (often, but not exclusively,
visual layout); generally not “executed” in the usual sense

Markup Languages

• HTML: HyperText Markup Language
• XML: Extensible Markup Language
• SGML: Standard Generalized Markup Language
• CSS: Cascading Style Sheets
• nroff: new roff (roff: runoff)
• LATEX: Lamport’s TEX (TEX: from “technology”)

Markup Languages
Feet

• HTML: You cut a bullethole in your foot with nothing more
than a small penknife, but you realize that to make it look
convincing, you need to be using Dreamweaver

• XML: You can’t actually shoot yourself in the foot; all you
can do is describe the gun in painful detail

• nroff:
troff -ms -Hdrwp | lpr -Pwp2 & .*place

bullet in footer .B .NR FT +3i .in 4 .bu Shoot!

.br .sp .in -4 .br .bp NR HD -2i .*

• CSS: Everyone can now shoot themselves in the foot, but
all their feet come out looking identical and attached to
their ears

Markup Languages
Feet

• HTML: You cut a bullethole in your foot with nothing more
than a small penknife, but you realize that to make it look
convincing, you need to be using Dreamweaver

• XML: You can’t actually shoot yourself in the foot; all you
can do is describe the gun in painful detail

• nroff:
troff -ms -Hdrwp | lpr -Pwp2 & .*place

bullet in footer .B .NR FT +3i .in 4 .bu Shoot!

.br .sp .in -4 .br .bp NR HD -2i .*

• CSS: Everyone can now shoot themselves in the foot, but
all their feet come out looking identical and attached to
their ears

Markup Languages
Feet

• HTML: You cut a bullethole in your foot with nothing more
than a small penknife, but you realize that to make it look
convincing, you need to be using Dreamweaver

• XML: You can’t actually shoot yourself in the foot; all you
can do is describe the gun in painful detail

• nroff:
troff -ms -Hdrwp | lpr -Pwp2 & .*place

bullet in footer .B .NR FT +3i .in 4 .bu Shoot!

.br .sp .in -4 .br .bp NR HD -2i .*

• CSS: Everyone can now shoot themselves in the foot, but
all their feet come out looking identical and attached to
their ears

Markup Languages
Feet

• HTML: You cut a bullethole in your foot with nothing more
than a small penknife, but you realize that to make it look
convincing, you need to be using Dreamweaver

• XML: You can’t actually shoot yourself in the foot; all you
can do is describe the gun in painful detail

• nroff:
troff -ms -Hdrwp | lpr -Pwp2 & .*place

bullet in footer .B .NR FT +3i .in 4 .bu Shoot!

.br .sp .in -4 .br .bp NR HD -2i .*

• CSS: Everyone can now shoot themselves in the foot, but
all their feet come out looking identical and attached to
their ears

Markup Languages

Very widely used

• HTML was originally used to describe the content (“this is
a section title”) and appearance (“use a big and bold font”)
of Web pages. Usually poorly

• These days the accepted approach is to use HTML to
describe the content, and use CSS to describe the
appearance

• XML is used to markup the meaning of (say) text.
Currently seen as the cure to all “Web 2.0” scenarios.
Usually incorrectly

Markup Languages

Very widely used

• HTML was originally used to describe the content (“this is
a section title”) and appearance (“use a big and bold font”)
of Web pages. Usually poorly

• These days the accepted approach is to use HTML to
describe the content, and use CSS to describe the
appearance

• XML is used to markup the meaning of (say) text.
Currently seen as the cure to all “Web 2.0” scenarios.
Usually incorrectly

Markup Languages

Very widely used

• HTML was originally used to describe the content (“this is
a section title”) and appearance (“use a big and bold font”)
of Web pages. Usually poorly

• These days the accepted approach is to use HTML to
describe the content, and use CSS to describe the
appearance

• XML is used to markup the meaning of (say) text.
Currently seen as the cure to all “Web 2.0” scenarios.
Usually incorrectly

Markup Languages
HTML

<html>

<head>

<title>CM20318</title>

<link rel="stylesheet" type="text/css" href="notes.css">

</head>

<body>

<h2>CM20318: Comparative Programming Languages</h2>

<h4>Unit Catalogue</h4>

CM20318

<p>

Markup Languages
CSS

body {

font-family: Arial;

background: white url("bg.png") repeat-y;

}

tt {

font-size: larger;

}

.warn {

color: red;

}

Markup Languages
XML

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<m:OrderItemResponse xmlns:m="Some-URI">

<OrderNumber>561381</OrderNumber>

</m:OrderItemResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP is a standard data encoding for transfer of data between Web
services that uses XML

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

Where we should mean ”display” in the general sense;
including “audio display” for the vision-impaired

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

Where we should mean ”display” in the general sense;
including “audio display” for the vision-impaired

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

Where we should mean ”display” in the general sense;
including “audio display” for the vision-impaired

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

Where we should mean ”display” in the general sense;
including “audio display” for the vision-impaired

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

Where we should mean ”display” in the general sense;
including “audio display” for the vision-impaired

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics

• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data

• XUL: XML User-interface Language, a language for
describing user interfaces

• AML: Astronomical Markup Language, for controlling
astronomical instruments.

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces

• AML: Astronomical Markup Language, for controlling
astronomical instruments.

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

Markup Languages
XML

• RSS: Really Simple Syndication
• WML: Wireless Markup Language
• SVG: Scalable Vector Graphics
• MusicXML: music notation
• VoiceXML: Voice Extensible Markup Language
• PDML: Product Data Markup Language
• ODF: Open Document Format
• SMIL: Synchronized Multimedia Integration Language
• Gastro Intestinal Markup Language
• And hundreds of others

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

Being text based is now a disadvantage as it is hard for
computers to parse quickly and accurately

Not many humans read or write HTML these days

XML has been adopted widely for Web applications, often
without proper consideration of the alternatives, such as JSON
(JavaScript Object Notation) or Google’s Protocol Buffers

Exercise These are examples of the many serialisation
languages: read about these

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

Being text based is now a disadvantage as it is hard for
computers to parse quickly and accurately

Not many humans read or write HTML these days

XML has been adopted widely for Web applications, often
without proper consideration of the alternatives, such as JSON
(JavaScript Object Notation) or Google’s Protocol Buffers

Exercise These are examples of the many serialisation
languages: read about these

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

Being text based is now a disadvantage as it is hard for
computers to parse quickly and accurately

Not many humans read or write HTML these days

XML has been adopted widely for Web applications, often
without proper consideration of the alternatives, such as JSON
(JavaScript Object Notation) or Google’s Protocol Buffers

Exercise These are examples of the many serialisation
languages: read about these

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

Being text based is now a disadvantage as it is hard for
computers to parse quickly and accurately

Not many humans read or write HTML these days

XML has been adopted widely for Web applications, often
without proper consideration of the alternatives, such as JSON
(JavaScript Object Notation) or Google’s Protocol Buffers

Exercise These are examples of the many serialisation
languages: read about these

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

Being text based is now a disadvantage as it is hard for
computers to parse quickly and accurately

Not many humans read or write HTML these days

XML has been adopted widely for Web applications, often
without proper consideration of the alternatives, such as JSON
(JavaScript Object Notation) or Google’s Protocol Buffers

Exercise These are examples of the many serialisation
languages: read about these

Markup Languages

Also, increasingly XML is being used to store information,
which it is very ill suited to do

Use a database to store information!

If you ever have a project that uses an “XML database”, walk
away in disgust

Markup Languages

Also, increasingly XML is being used to store information,
which it is very ill suited to do

Use a database to store information!

If you ever have a project that uses an “XML database”, walk
away in disgust

Markup Languages

Also, increasingly XML is being used to store information,
which it is very ill suited to do

Use a database to store information!

If you ever have a project that uses an “XML database”, walk
away in disgust

Object Oriented Languages

Purpose: general programming

Examples: Java, C++, Objective C, C#, JavaScript, Eiffel,
Swift . . . , and many other languages with objects of some kind

Notable features: use of objects as a means to control
complexity

The concept of objects is so persuasive that there are a large
number of languages (Python, Haskell, etc.) that are not
usually thought of as OO languages but incorporate objects in
some way

Object Oriented Languages

Purpose: general programming

Examples: Java, C++, Objective C, C#, JavaScript, Eiffel,
Swift . . . , and many other languages with objects of some kind

Notable features: use of objects as a means to control
complexity

The concept of objects is so persuasive that there are a large
number of languages (Python, Haskell, etc.) that are not
usually thought of as OO languages but incorporate objects in
some way

Object Oriented Languages
Feet

• C++: You accidentally create a dozen clones of yourself
and shoot them all in the foot. Emergency medical
assistance is impossible since you can’t tell which are
bitwise copies and which are just pointing at others and
saying, “That’s me, over there.”

• C++ (2): “C makes it easy to shoot yourself in the foot; C++
makes it harder, but when you do, it blows away your whole
leg” (Bjarne Stroustrup)

Note that C++ is now such a large language (“many featured”)
that group projects using it often start by deciding on which
subset of the language they are going to use

Object Oriented Languages
Feet

• C++: You accidentally create a dozen clones of yourself
and shoot them all in the foot. Emergency medical
assistance is impossible since you can’t tell which are
bitwise copies and which are just pointing at others and
saying, “That’s me, over there.”

• C++ (2): “C makes it easy to shoot yourself in the foot; C++
makes it harder, but when you do, it blows away your whole
leg” (Bjarne Stroustrup)

Note that C++ is now such a large language (“many featured”)
that group projects using it often start by deciding on which
subset of the language they are going to use

Object Oriented Languages
Feet

• C++: You accidentally create a dozen clones of yourself
and shoot them all in the foot. Emergency medical
assistance is impossible since you can’t tell which are
bitwise copies and which are just pointing at others and
saying, “That’s me, over there.”

• C++ (2): “C makes it easy to shoot yourself in the foot; C++
makes it harder, but when you do, it blows away your whole
leg” (Bjarne Stroustrup)

Note that C++ is now such a large language (“many featured”)
that group projects using it often start by deciding on which
subset of the language they are going to use

Object Oriented Languages
Feet

• Objective C: You write a protocol for shooting yourself in
the foot so that all people can get shot in their feet

• C#: You can’t figure out a different way to shoot yourself in
the foot so you end up copying Java

• Eiffel: You take out a contract on your foot. The
precondition is that there’s a bullet in the gun; the
postcondition is that there’s a hole in your foot

Object Oriented Languages
Feet

• Objective C: You write a protocol for shooting yourself in
the foot so that all people can get shot in their feet

• C#: You can’t figure out a different way to shoot yourself in
the foot so you end up copying Java

• Eiffel: You take out a contract on your foot. The
precondition is that there’s a bullet in the gun; the
postcondition is that there’s a hole in your foot

Object Oriented Languages
Feet

• Objective C: You write a protocol for shooting yourself in
the foot so that all people can get shot in their feet

• C#: You can’t figure out a different way to shoot yourself in
the foot so you end up copying Java

• Eiffel: You take out a contract on your foot. The
precondition is that there’s a bullet in the gun; the
postcondition is that there’s a hole in your foot

Object Oriented Languages
Feet

• Swift: You try to shoot yourself in the foot with the
ultra-modern Swift gun, but you discover the gun has no
trigger. Instead, it’s designed to shoot automatically only
when pointed safely at its intended target, with any type of
bullet. Occasionally it explodes in your hand and takes off
your arm

Swift is Objective-C without the C

Craig Federighi (Apple)

Object Oriented Languages
Feet

• Swift: You try to shoot yourself in the foot with the
ultra-modern Swift gun, but you discover the gun has no
trigger. Instead, it’s designed to shoot automatically only
when pointed safely at its intended target, with any type of
bullet. Occasionally it explodes in your hand and takes off
your arm

Swift is Objective-C without the C

Craig Federighi (Apple)

Object Oriented Languages

We are going to look at OO in depth later

Warning: when you are talking to people and they use the word
“object”, take care to make it clear if they are using the word in
the OO sense, or in the generic (meaning just some “thing”)
sense

Object Oriented Languages

We are going to look at OO in depth later

Warning: when you are talking to people and they use the word
“object”, take care to make it clear if they are using the word in
the OO sense, or in the generic (meaning just some “thing”)
sense

Actor Languages

Related to OO is the concept of an Actor

An actor is an entity or object (sometimes as in the OO sense,
sometimes not) that communicates with other actors purely by
means of messages

Actor Languages

Related to OO is the concept of an Actor

An actor is an entity or object (sometimes as in the OO sense,
sometimes not) that communicates with other actors purely by
means of messages

Actor Languages

When an actor receives a message it may

• do some computation and modify its internal state
• send some messages to other actors
• create some new actors

And it might do any or all of these things in any order or at the
same time in parallel

A kind of dataflow on objects

Actor Languages

When an actor receives a message it may

• do some computation and modify its internal state

• send some messages to other actors
• create some new actors

And it might do any or all of these things in any order or at the
same time in parallel

A kind of dataflow on objects

Actor Languages

When an actor receives a message it may

• do some computation and modify its internal state
• send some messages to other actors

• create some new actors

And it might do any or all of these things in any order or at the
same time in parallel

A kind of dataflow on objects

Actor Languages

When an actor receives a message it may

• do some computation and modify its internal state
• send some messages to other actors
• create some new actors

And it might do any or all of these things in any order or at the
same time in parallel

A kind of dataflow on objects

Actor Languages

When an actor receives a message it may

• do some computation and modify its internal state
• send some messages to other actors
• create some new actors

And it might do any or all of these things in any order or at the
same time in parallel

A kind of dataflow on objects

Actor Languages

When an actor receives a message it may

• do some computation and modify its internal state
• send some messages to other actors
• create some new actors

And it might do any or all of these things in any order or at the
same time in parallel

A kind of dataflow on objects

Actor Languages

Purpose: general programming, simulation, concurrent systems

Examples: Pony, Erlang, Elixir (compiles to Erlang bytecode),
Scala, but often added into a language by means of a library

Notable features: use of actors passing messages to structure
systems

Actor Languages

The idea of actors was to decouple computation from
communication, allowing a natural way of having asynchronous
communication between computations

And to have an inherently concurrent way of programming that
allows a huge amount of parallelism in the execution

A system could have thousand or millions of actors and the
language runtime will schedule them as it sees fit on the
available hardware

But this means that such runtimes are incredibly complicated to
make efficient

Exercise A popular use of actors is in Multi-Agent Systems.
Read about these

Actor Languages

The idea of actors was to decouple computation from
communication, allowing a natural way of having asynchronous
communication between computations

And to have an inherently concurrent way of programming that
allows a huge amount of parallelism in the execution

A system could have thousand or millions of actors and the
language runtime will schedule them as it sees fit on the
available hardware

But this means that such runtimes are incredibly complicated to
make efficient

Exercise A popular use of actors is in Multi-Agent Systems.
Read about these

Actor Languages

The idea of actors was to decouple computation from
communication, allowing a natural way of having asynchronous
communication between computations

And to have an inherently concurrent way of programming that
allows a huge amount of parallelism in the execution

A system could have thousand or millions of actors and the
language runtime will schedule them as it sees fit on the
available hardware

But this means that such runtimes are incredibly complicated to
make efficient

Exercise A popular use of actors is in Multi-Agent Systems.
Read about these

Actor Languages

The idea of actors was to decouple computation from
communication, allowing a natural way of having asynchronous
communication between computations

And to have an inherently concurrent way of programming that
allows a huge amount of parallelism in the execution

A system could have thousand or millions of actors and the
language runtime will schedule them as it sees fit on the
available hardware

But this means that such runtimes are incredibly complicated to
make efficient

Exercise A popular use of actors is in Multi-Agent Systems.
Read about these

Actor Languages

The idea of actors was to decouple computation from
communication, allowing a natural way of having asynchronous
communication between computations

And to have an inherently concurrent way of programming that
allows a huge amount of parallelism in the execution

A system could have thousand or millions of actors and the
language runtime will schedule them as it sees fit on the
available hardware

But this means that such runtimes are incredibly complicated to
make efficient

Exercise A popular use of actors is in Multi-Agent Systems.
Read about these

Language Families

And so on

We could go on with more families (symbolic languages,
probabilistic languages, etc.), but instead we shall change tack
slightly to look more at the features that languages may support

So: we have looked at what languages might to; we turn to how
they might do it

Language Families

And so on

We could go on with more families (symbolic languages,
probabilistic languages, etc.), but instead we shall change tack
slightly to look more at the features that languages may support

So: we have looked at what languages might to; we turn to how
they might do it

Language Families

And so on

We could go on with more families (symbolic languages,
probabilistic languages, etc.), but instead we shall change tack
slightly to look more at the features that languages may support

So: we have looked at what languages might to; we turn to how
they might do it

Other Classifications

There are many other classifications that cut across the families
we have described

Some more important than others

• Declarative and Imperative
• Parallel or Sequential
• GC and non-GC
• Strongly typed, weakly typed, statically typed, dynamically

typed and untyped
• Area of application: numeric, symbolic, business process,

graphical, database, . . .
• Interpreted and Compiled (byte code interpreted etc.)
• and so on

Other Classifications

There are many other classifications that cut across the families
we have described

Some more important than others

• Declarative and Imperative
• Parallel or Sequential
• GC and non-GC
• Strongly typed, weakly typed, statically typed, dynamically

typed and untyped
• Area of application: numeric, symbolic, business process,

graphical, database, . . .
• Interpreted and Compiled (byte code interpreted etc.)
• and so on

Other Classifications

There are many other classifications that cut across the families
we have described

Some more important than others

• Declarative and Imperative
• Parallel or Sequential
• GC and non-GC
• Strongly typed, weakly typed, statically typed, dynamically

typed and untyped
• Area of application: numeric, symbolic, business process,

graphical, database, . . .
• Interpreted and Compiled (byte code interpreted etc.)
• and so on

Declarative and Imperative

Imperative: the program describes the actions to be taken

Examples: C, Java, Lisp, Fortran, . . .

Notable features: program code is essentially “do this; then
this; then this”, with loops and functions, maybe sequential,
maybe parallel and with all the things you are used to to control
the flow of execution

Declarative and Imperative

Declarative: the program is a description of what we want, with
little or no explicit direction on how to do it, or no particular
control flow

Examples: Prolog, ASP (Answer Set Programming), Haskell,
Mathematica (pattern matching part), SQL (Structured Query
Language), configuration languages . . .

Notable features: the system itself determines how to progress
a computation

For example, an SQL engine must find the best way of finding
the records that fit the query

Declarative and Imperative

Declarative: the program is a description of what we want, with
little or no explicit direction on how to do it, or no particular
control flow

Examples: Prolog, ASP (Answer Set Programming), Haskell,
Mathematica (pattern matching part), SQL (Structured Query
Language), configuration languages . . .

Notable features: the system itself determines how to progress
a computation

For example, an SQL engine must find the best way of finding
the records that fit the query

Declarative and Imperative

Terminology alert: some people say declarative languages are
those languages where programs can be regarded as
theorems with computations as the proofs of the theorems

This would include functional programming and probably all
other languages so is not such a helpful view for separating
languages into different classifications

Declarative and Imperative

Terminology alert: some people say declarative languages are
those languages where programs can be regarded as
theorems with computations as the proofs of the theorems

This would include functional programming and probably all
other languages so is not such a helpful view for separating
languages into different classifications

Declarative and Imperative
Feet

• Mathematica: You try to shoot yourself in the foot and then
have to figure out why it didn’t work

• Mathematica (2): Your code to shoot yourself in the foot
actually shoots someone else in the foot, but you think it
works because you still feel pain

• SQL: You cut your foot off, send it out to a service bureau
and when it returns, it has a hole in it but will no longer fit
the attachment at the end of your leg

Declarative and Imperative
Feet

• Mathematica: You try to shoot yourself in the foot and then
have to figure out why it didn’t work

• Mathematica (2): Your code to shoot yourself in the foot
actually shoots someone else in the foot, but you think it
works because you still feel pain

• SQL: You cut your foot off, send it out to a service bureau
and when it returns, it has a hole in it but will no longer fit
the attachment at the end of your leg

Declarative and Imperative
Feet

• Mathematica: You try to shoot yourself in the foot and then
have to figure out why it didn’t work

• Mathematica (2): Your code to shoot yourself in the foot
actually shoots someone else in the foot, but you think it
works because you still feel pain

• SQL: You cut your foot off, send it out to a service bureau
and when it returns, it has a hole in it but will no longer fit
the attachment at the end of your leg

Declarative and Imperative

Imperative languages are clearly very widely used

Declarative languages are also very widely used

This is because SQL is hugely widely used (it’s in your browser;
it’s in your phone!)

Declarative and Imperative

Imperative languages are clearly very widely used

Declarative languages are also very widely used

This is because SQL is hugely widely used (it’s in your browser;
it’s in your phone!)

Declarative and Imperative

Imperative languages are clearly very widely used

Declarative languages are also very widely used

This is because SQL is hugely widely used (it’s in your browser;
it’s in your phone!)

Declarative and Imperative

One important subset of declarative languages are the logic
languages such as Prolog and ASP

Here the computations are definitely proofs of theorems

At a stretch, markup languages can be though of as declarative

Programmers often have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

Declarative and Imperative

One important subset of declarative languages are the logic
languages such as Prolog and ASP

Here the computations are definitely proofs of theorems

At a stretch, markup languages can be though of as declarative

Programmers often have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

Declarative and Imperative

One important subset of declarative languages are the logic
languages such as Prolog and ASP

Here the computations are definitely proofs of theorems

At a stretch, markup languages can be though of as declarative

Programmers often have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

Declarative and Imperative

One important subset of declarative languages are the logic
languages such as Prolog and ASP

Here the computations are definitely proofs of theorems

At a stretch, markup languages can be though of as declarative

Programmers often have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

Declarative and Imperative

One important subset of declarative languages are the logic
languages such as Prolog and ASP

Here the computations are definitely proofs of theorems

At a stretch, markup languages can be though of as declarative

Programmers often have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

Declarative and Imperative

In a declarative language the system determines how to
progress a computation

An SQL example. A database contains a table Exams

Name Course Mark
Smith C++ Prog 65
Jones C++ Prog 85
Brown Java Prog 35
Smith Java Prog 88

SQL query:
select Name, Mark from Exams where Course = ’C++ Prog’ and

Mark > 50;

Declarative and Imperative

In a declarative language the system determines how to
progress a computation

An SQL example. A database contains a table Exams

Name Course Mark
Smith C++ Prog 65
Jones C++ Prog 85
Brown Java Prog 35
Smith Java Prog 88

SQL query:
select Name, Mark from Exams where Course = ’C++ Prog’ and

Mark > 50;

Declarative and Imperative

In a declarative language the system determines how to
progress a computation

An SQL example. A database contains a table Exams

Name Course Mark
Smith C++ Prog 65
Jones C++ Prog 85
Brown Java Prog 35
Smith Java Prog 88

SQL query:
select Name, Mark from Exams where Course = ’C++ Prog’ and

Mark > 50;

Declarative and Imperative

It returns something like

Name Mark
Jones 85
Smith 65

The point being we did not instruct the SQL engine on how to
find those results: it can choose any method it likes

E.g., iterating through the table testing for Course then Mark

Or, testing for Mark then Course

A sophisticated SQL engine will make a judgement and choose
the most efficient search

Declarative and Imperative

It returns something like

Name Mark
Jones 85
Smith 65

The point being we did not instruct the SQL engine on how to
find those results: it can choose any method it likes

E.g., iterating through the table testing for Course then Mark

Or, testing for Mark then Course

A sophisticated SQL engine will make a judgement and choose
the most efficient search

Declarative and Imperative

It returns something like

Name Mark
Jones 85
Smith 65

The point being we did not instruct the SQL engine on how to
find those results: it can choose any method it likes

E.g., iterating through the table testing for Course then Mark

Or, testing for Mark then Course

A sophisticated SQL engine will make a judgement and choose
the most efficient search

Declarative and Imperative

It returns something like

Name Mark
Jones 85
Smith 65

The point being we did not instruct the SQL engine on how to
find those results: it can choose any method it likes

E.g., iterating through the table testing for Course then Mark

Or, testing for Mark then Course

A sophisticated SQL engine will make a judgement and choose
the most efficient search

Declarative and Imperative

It returns something like

Name Mark
Jones 85
Smith 65

The point being we did not instruct the SQL engine on how to
find those results: it can choose any method it likes

E.g., iterating through the table testing for Course then Mark

Or, testing for Mark then Course

A sophisticated SQL engine will make a judgement and choose
the most efficient search

Declarative and Imperative

“Declarative” means you can use it without knowing
what it’s doing. All too often, it means you can’t tell
what it’s doing, either.

Anon

