
Parallel

Parallel computers are becoming ever more important

Most programming languages were designed decades ago in a
uniprocessor world

Some languages families are naturally parallel

• Declarative
• Functional

As declarative languages don’t specify how to do something,
the system is free to do things in the most efficient way it can:
and this includes in parallel



Parallel

Parallel computers are becoming ever more important

Most programming languages were designed decades ago in a
uniprocessor world

Some languages families are naturally parallel

• Declarative
• Functional

As declarative languages don’t specify how to do something,
the system is free to do things in the most efficient way it can:
and this includes in parallel



Parallel

Parallel computers are becoming ever more important

Most programming languages were designed decades ago in a
uniprocessor world

Some languages families are naturally parallel

• Declarative
• Functional

As declarative languages don’t specify how to do something,
the system is free to do things in the most efficient way it can:
and this includes in parallel



Parallel

Parallel computers are becoming ever more important

Most programming languages were designed decades ago in a
uniprocessor world

Some languages families are naturally parallel

• Declarative
• Functional

As declarative languages don’t specify how to do something,
the system is free to do things in the most efficient way it can:
and this includes in parallel



Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems



Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems



Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems



Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems



Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems



Parallel

There have been many attempts to take existing sequential
languages and tweak them to support parallelism

The idea is to take advantage of the programmer’s familiarity
with the legacy sequential language

Which may lure them into a false sense that they understand
what they are doing in the parallel version of the language

And the legacy language likely has no in-built prevention of
things that are safe sequentially, but dangerous in parallel (e.g.,
updating a shared variable)



Parallel

There have been many attempts to take existing sequential
languages and tweak them to support parallelism

The idea is to take advantage of the programmer’s familiarity
with the legacy sequential language

Which may lure them into a false sense that they understand
what they are doing in the parallel version of the language

And the legacy language likely has no in-built prevention of
things that are safe sequentially, but dangerous in parallel (e.g.,
updating a shared variable)



Parallel

There have been many attempts to take existing sequential
languages and tweak them to support parallelism

The idea is to take advantage of the programmer’s familiarity
with the legacy sequential language

Which may lure them into a false sense that they understand
what they are doing in the parallel version of the language

And the legacy language likely has no in-built prevention of
things that are safe sequentially, but dangerous in parallel (e.g.,
updating a shared variable)



Parallel

There have been many attempts to take existing sequential
languages and tweak them to support parallelism

The idea is to take advantage of the programmer’s familiarity
with the legacy sequential language

Which may lure them into a false sense that they understand
what they are doing in the parallel version of the language

And the legacy language likely has no in-built prevention of
things that are safe sequentially, but dangerous in parallel (e.g.,
updating a shared variable)



Parallel

Some languages were designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C



Parallel

Some languages were designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C



Parallel

Some languages were designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C



Parallel

Some languages were designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C



Parallel

Some languages were designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C



Parallel

Some languages were designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C



Parallel
Feet

• Occam: You shoot both your feet with several guns at once
• Go: To shoot yourself in the foot you must first import the
unsafe package

• Rust: you try to shoot yourself in the foot, but you can’t as
the gun has immutably borrowed your foot



Parallel

In practice, most parallel programmers use legacy languages
such as C, C++ and Java

With tweaks to the language, or by using parallel libraries of
code

And they typically have a lot of parallelism (and other!) bugs



Parallel

In practice, most parallel programmers use legacy languages
such as C, C++ and Java

With tweaks to the language, or by using parallel libraries of
code

And they typically have a lot of parallelism (and other!) bugs



Parallel

In practice, most parallel programmers use legacy languages
such as C, C++ and Java

With tweaks to the language, or by using parallel libraries of
code

And they typically have a lot of parallelism (and other!) bugs



Parallel

But there are many large, successful parallel systems built
using these languages

Even though it would be better to throw away all the code and
start again with a language that was designed with parallelism
in mind

But the economics of doing this (time to train programmers,
time to write and debug new code, etc.) means it rarely
happens



Parallel

But there are many large, successful parallel systems built
using these languages

Even though it would be better to throw away all the code and
start again with a language that was designed with parallelism
in mind

But the economics of doing this (time to train programmers,
time to write and debug new code, etc.) means it rarely
happens



Parallel

But there are many large, successful parallel systems built
using these languages

Even though it would be better to throw away all the code and
start again with a language that was designed with parallelism
in mind

But the economics of doing this (time to train programmers,
time to write and debug new code, etc.) means it rarely
happens



Parallel

The conclusion is: if you are starting a new project that needs
to be parallel, think carefully about the language you are going
to use

If you are taking an existing project and trying to make it
parallel: be very careful

There is much more to be said. There is a whole final-year Unit
on parallelism!



Parallel

The conclusion is: if you are starting a new project that needs
to be parallel, think carefully about the language you are going
to use

If you are taking an existing project and trying to make it
parallel: be very careful

There is much more to be said. There is a whole final-year Unit
on parallelism!



Parallel

The conclusion is: if you are starting a new project that needs
to be parallel, think carefully about the language you are going
to use

If you are taking an existing project and trying to make it
parallel: be very careful

There is much more to be said. There is a whole final-year Unit
on parallelism!



Memory Management

Some languages manage memory allocation and deallocation
for you, some don’t

For example, some languages have garbage collection, while
others require the programmer to take care over memory
deallocation



Memory Management

Some languages manage memory allocation and deallocation
for you, some don’t

For example, some languages have garbage collection, while
others require the programmer to take care over memory
deallocation



Memory Management

In code

bigclass x = new bigclass(1);

x = new bigclass(2);

or

(setq x (make <bigclass> 1))

(setq x (make <bigclass> 2))

They both allocate memory to store an instance of bigclass
(initialised with 1); then they allocate more memory to store
another instance of bigclass (initialised with 2)

But the memory allocated to the object 1 is no longer
accessible to the program as the reference to the object stored
in the variable x has been overwritten



Memory Management

In code

bigclass x = new bigclass(1);

x = new bigclass(2);

or

(setq x (make <bigclass> 1))

(setq x (make <bigclass> 2))

They both allocate memory to store an instance of bigclass
(initialised with 1); then they allocate more memory to store
another instance of bigclass (initialised with 2)

But the memory allocated to the object 1 is no longer
accessible to the program as the reference to the object stored
in the variable x has been overwritten



Memory Management

In code

bigclass x = new bigclass(1);

x = new bigclass(2);

or

(setq x (make <bigclass> 1))

(setq x (make <bigclass> 2))

They both allocate memory to store an instance of bigclass
(initialised with 1); then they allocate more memory to store
another instance of bigclass (initialised with 2)

But the memory allocated to the object 1 is no longer
accessible to the program as the reference to the object stored
in the variable x has been overwritten



Memory Management

In code

bigclass x = new bigclass(1);

x = new bigclass(2);

or

(setq x (make <bigclass> 1))

(setq x (make <bigclass> 2))

They both allocate memory to store an instance of bigclass
(initialised with 1); then they allocate more memory to store
another instance of bigclass (initialised with 2)

But the memory allocated to the object 1 is no longer
accessible to the program as the reference to the object stored
in the variable x has been overwritten



Memory Management

In code

bigclass x = new bigclass(1);

x = new bigclass(2);

or

(setq x (make <bigclass> 1))

(setq x (make <bigclass> 2))

They both allocate memory to store an instance of bigclass
(initialised with 1); then they allocate more memory to store
another instance of bigclass (initialised with 2)

But the memory allocated to the object 1 is no longer
accessible to the program as the reference to the object stored
in the variable x has been overwritten



Memory Management

In code

bigclass x = new bigclass(1);

x = new bigclass(2);

or

(setq x (make <bigclass> 1))

(setq x (make <bigclass> 2))

They both allocate memory to store an instance of bigclass
(initialised with 1); then they allocate more memory to store
another instance of bigclass (initialised with 2)

But the memory allocated to the object 1 is no longer
accessible to the program as the reference to the object stored
in the variable x has been overwritten



Memory Management
GC

Being inaccessible to the program means that object can have
no use to the program, it cannot affect the program, but just sits
there occupying memory

But, equally, being inaccessible, that program couldn’t tell if that
memory was reused for something else

Thus: this memory can’t be accessed by the program, so it can
be used for something else

Otherwise, that memory is just garbage. We can use a garbage
collector to search out such inaccessible memory and reclaim it
and reuse it



Memory Management
GC

Being inaccessible to the program means that object can have
no use to the program, it cannot affect the program, but just sits
there occupying memory

But, equally, being inaccessible, that program couldn’t tell if that
memory was reused for something else

Thus: this memory can’t be accessed by the program, so it can
be used for something else

Otherwise, that memory is just garbage. We can use a garbage
collector to search out such inaccessible memory and reclaim it
and reuse it



Memory Management
GC

Being inaccessible to the program means that object can have
no use to the program, it cannot affect the program, but just sits
there occupying memory

But, equally, being inaccessible, that program couldn’t tell if that
memory was reused for something else

Thus: this memory can’t be accessed by the program, so it can
be used for something else

Otherwise, that memory is just garbage. We can use a garbage
collector to search out such inaccessible memory and reclaim it
and reuse it



Memory Management
GC

Being inaccessible to the program means that object can have
no use to the program, it cannot affect the program, but just sits
there occupying memory

But, equally, being inaccessible, that program couldn’t tell if that
memory was reused for something else

Thus: this memory can’t be accessed by the program, so it can
be used for something else

Otherwise, that memory is just garbage. We can use a garbage
collector to search out such inaccessible memory and reclaim it
and reuse it



Memory Management
GC

Note, if we do nothing, the program will likely eventually run out
of memory

A garbage collector is code, usually part of the language
runtime, that periodically searches through memory for memory
that is no longer accessible to the program and reclaims it and
so allows it to be reused

Often, the user program has to stop running while the GC does
its thing as the GC may move values around in memory to tidy
up the free spaces

Though well-designed GC code runs very quickly, or, in a few
systems, in parallel with the application code



Memory Management
GC

Note, if we do nothing, the program will likely eventually run out
of memory

A garbage collector is code, usually part of the language
runtime, that periodically searches through memory for memory
that is no longer accessible to the program and reclaims it and
so allows it to be reused

Often, the user program has to stop running while the GC does
its thing as the GC may move values around in memory to tidy
up the free spaces

Though well-designed GC code runs very quickly, or, in a few
systems, in parallel with the application code



Memory Management
GC

Note, if we do nothing, the program will likely eventually run out
of memory

A garbage collector is code, usually part of the language
runtime, that periodically searches through memory for memory
that is no longer accessible to the program and reclaims it and
so allows it to be reused

Often, the user program has to stop running while the GC does
its thing as the GC may move values around in memory to tidy
up the free spaces

Though well-designed GC code runs very quickly, or, in a few
systems, in parallel with the application code



Memory Management
GC

Note, if we do nothing, the program will likely eventually run out
of memory

A garbage collector is code, usually part of the language
runtime, that periodically searches through memory for memory
that is no longer accessible to the program and reclaims it and
so allows it to be reused

Often, the user program has to stop running while the GC does
its thing as the GC may move values around in memory to tidy
up the free spaces

Though well-designed GC code runs very quickly, or, in a few
systems, in parallel with the application code



Memory Management
GC or Manual

Languages with integrated GC include Lisp, Haskell, Java,
JavaScript, Perl, Python, Go

Languages without integrated GC include C, C++, Rust

In languages that use manual memory management (not GC) if
you drop all references to an object, that’s the programmer’s
problem and this is generally regarded as a bug as that
memory is now permanently lost to the program

It happens that the Java-like code above is also valid C++

Thus it is buggy C++ with a memory leak : the memory is never
recovered and reused



Memory Management
GC or Manual

Languages with integrated GC include Lisp, Haskell, Java,
JavaScript, Perl, Python, Go

Languages without integrated GC include C, C++, Rust

In languages that use manual memory management (not GC) if
you drop all references to an object, that’s the programmer’s
problem and this is generally regarded as a bug as that
memory is now permanently lost to the program

It happens that the Java-like code above is also valid C++

Thus it is buggy C++ with a memory leak : the memory is never
recovered and reused



Memory Management
GC or Manual

Languages with integrated GC include Lisp, Haskell, Java,
JavaScript, Perl, Python, Go

Languages without integrated GC include C, C++, Rust

In languages that use manual memory management (not GC) if
you drop all references to an object, that’s the programmer’s
problem and this is generally regarded as a bug as that
memory is now permanently lost to the program

It happens that the Java-like code above is also valid C++

Thus it is buggy C++ with a memory leak : the memory is never
recovered and reused



Memory Management
GC or Manual

Languages with integrated GC include Lisp, Haskell, Java,
JavaScript, Perl, Python, Go

Languages without integrated GC include C, C++, Rust

In languages that use manual memory management (not GC) if
you drop all references to an object, that’s the programmer’s
problem and this is generally regarded as a bug as that
memory is now permanently lost to the program

It happens that the Java-like code above is also valid C++

Thus it is buggy C++ with a memory leak : the memory is never
recovered and reused



Memory Management
GC or Manual

Languages with integrated GC include Lisp, Haskell, Java,
JavaScript, Perl, Python, Go

Languages without integrated GC include C, C++, Rust

In languages that use manual memory management (not GC) if
you drop all references to an object, that’s the programmer’s
problem and this is generally regarded as a bug as that
memory is now permanently lost to the program

It happens that the Java-like code above is also valid C++

Thus it is buggy C++ with a memory leak : the memory is never
recovered and reused



Memory Management
GC or Manual

With MMM the programmer needs to explicitly allocate memory
for values and then free (deallocate) that memory when they
are done with it

int *array = malloc(4*sizeof(int)); // allocate

...

... do stuff with array

...

free(array); // deallocate

Remember, in real code, the allocate and free can be
thousands of lines of code apart, and written by different
programmers; or there might be more than one place where
allocation or deallocation could be done; and so on



Memory Management
GC or Manual

With MMM the programmer needs to explicitly allocate memory
for values and then free (deallocate) that memory when they
are done with it

int *array = malloc(4*sizeof(int)); // allocate

...

... do stuff with array

...

free(array); // deallocate

Remember, in real code, the allocate and free can be
thousands of lines of code apart, and written by different
programmers; or there might be more than one place where
allocation or deallocation could be done; and so on



Memory Management
GC or Manual

If the free is forgotten (after we have finished with array), that’s
memory that can never be used again (a leak)

If the array is used after the free, that’s a bug as the memory it
uses might now have been allocated to something else in the
system

Writing into the array is overwriting the bytes used by some
other value in the system



Memory Management
GC or Manual

If the free is forgotten (after we have finished with array), that’s
memory that can never be used again (a leak)

If the array is used after the free, that’s a bug as the memory it
uses might now have been allocated to something else in the
system

Writing into the array is overwriting the bytes used by some
other value in the system



Memory Management
GC or Manual

If the free is forgotten (after we have finished with array), that’s
memory that can never be used again (a leak)

If the array is used after the free, that’s a bug as the memory it
uses might now have been allocated to something else in the
system

Writing into the array is overwriting the bytes used by some
other value in the system



Memory Management
Manual

A program with a memory leak will gradually use more and
more memory until the OS says it’s had enough

And then the program probably crashes as the programmer
only tested it on small examples

In Java the bigclass example is arguably not buggy, but it is
definitely poor code as it wastes time creating useless objects;
and wastes time collecting the garbage

Exercise Find the time it takes to create an object in Java, or
your favourite language



Memory Management
Manual

A program with a memory leak will gradually use more and
more memory until the OS says it’s had enough

And then the program probably crashes as the programmer
only tested it on small examples

In Java the bigclass example is arguably not buggy, but it is
definitely poor code as it wastes time creating useless objects;
and wastes time collecting the garbage

Exercise Find the time it takes to create an object in Java, or
your favourite language



Memory Management
Manual

A program with a memory leak will gradually use more and
more memory until the OS says it’s had enough

And then the program probably crashes as the programmer
only tested it on small examples

In Java the bigclass example is arguably not buggy, but it is
definitely poor code as it wastes time creating useless objects;
and wastes time collecting the garbage

Exercise Find the time it takes to create an object in Java, or
your favourite language



Memory Management
Manual

A program with a memory leak will gradually use more and
more memory until the OS says it’s had enough

And then the program probably crashes as the programmer
only tested it on small examples

In Java the bigclass example is arguably not buggy, but it is
definitely poor code as it wastes time creating useless objects;
and wastes time collecting the garbage

Exercise Find the time it takes to create an object in Java, or
your favourite language



Memory Management
Manual

Code written using manual memory management must be very
careful on its use of memory, e.g., use of malloc and free, or
new and delete, to ensure they match up correctly

That is to say, the application programmer must be very careful

Code written in GC languages can let the GC take care of
things

That is to say, the application programmer doesn’t have to take
care

(The programmer who implemented the GC in the runtime
definitely needed to care!)



Memory Management
Manual

Code written using manual memory management must be very
careful on its use of memory, e.g., use of malloc and free, or
new and delete, to ensure they match up correctly

That is to say, the application programmer must be very careful

Code written in GC languages can let the GC take care of
things

That is to say, the application programmer doesn’t have to take
care

(The programmer who implemented the GC in the runtime
definitely needed to care!)



Memory Management
Manual

Code written using manual memory management must be very
careful on its use of memory, e.g., use of malloc and free, or
new and delete, to ensure they match up correctly

That is to say, the application programmer must be very careful

Code written in GC languages can let the GC take care of
things

That is to say, the application programmer doesn’t have to take
care

(The programmer who implemented the GC in the runtime
definitely needed to care!)



Memory Management
Manual

Code written using manual memory management must be very
careful on its use of memory, e.g., use of malloc and free, or
new and delete, to ensure they match up correctly

That is to say, the application programmer must be very careful

Code written in GC languages can let the GC take care of
things

That is to say, the application programmer doesn’t have to take
care

(The programmer who implemented the GC in the runtime
definitely needed to care!)



Memory Management
Manual

Code written using manual memory management must be very
careful on its use of memory, e.g., use of malloc and free, or
new and delete, to ensure they match up correctly

That is to say, the application programmer must be very careful

Code written in GC languages can let the GC take care of
things

That is to say, the application programmer doesn’t have to take
care

(The programmer who implemented the GC in the runtime
definitely needed to care!)



GC vs. Manual

GC: no memory worries for the programmer, but generally less
efficient (as the GC has to search through memory to find
inaccessible memory) and encourages sloppy programming

The memory system and GC code has to be generic and work
in all kinds of situations

MMM: allows precise memory management as the programmer
will explicitly allocate and deallocate memory, but also
facilitates buggy programming as it is easy for the programmer
to get it wrong

The programmer can tune the use of memory for their
application



GC vs. Manual

GC: no memory worries for the programmer, but generally less
efficient (as the GC has to search through memory to find
inaccessible memory) and encourages sloppy programming

The memory system and GC code has to be generic and work
in all kinds of situations

MMM: allows precise memory management as the programmer
will explicitly allocate and deallocate memory, but also
facilitates buggy programming as it is easy for the programmer
to get it wrong

The programmer can tune the use of memory for their
application



GC vs. Manual

GC: no memory worries for the programmer, but generally less
efficient (as the GC has to search through memory to find
inaccessible memory) and encourages sloppy programming

The memory system and GC code has to be generic and work
in all kinds of situations

MMM: allows precise memory management as the programmer
will explicitly allocate and deallocate memory, but also
facilitates buggy programming as it is easy for the programmer
to get it wrong

The programmer can tune the use of memory for their
application



GC vs. Manual

GC: no memory worries for the programmer, but generally less
efficient (as the GC has to search through memory to find
inaccessible memory) and encourages sloppy programming

The memory system and GC code has to be generic and work
in all kinds of situations

MMM: allows precise memory management as the programmer
will explicitly allocate and deallocate memory, but also
facilitates buggy programming as it is easy for the programmer
to get it wrong

The programmer can tune the use of memory for their
application



GC

A garbage collector can be added to C and C++ (etc.) as a
library

Not as precise as an in-built GC as (for various reasons): it
might miss occasional bits of garbage

Exercise Is this the best of both worlds or the worst of both
worlds?



GC

A garbage collector can be added to C and C++ (etc.) as a
library

Not as precise as an in-built GC as (for various reasons): it
might miss occasional bits of garbage

Exercise Is this the best of both worlds or the worst of both
worlds?



GC

A garbage collector can be added to C and C++ (etc.) as a
library

Not as precise as an in-built GC as (for various reasons): it
might miss occasional bits of garbage

Exercise Is this the best of both worlds or the worst of both
worlds?



Memory Management

Maybe the best approach is to write good and correct code in
the first place?

But that’s never going to happen

“Around 70 percent of all the vulnerabilities in Microsoft
products addressed through a security update each
year are memory safety issues”
Matt Miller, Microsoft security engineer, Feb 2019



Memory Management

Maybe the best approach is to write good and correct code in
the first place?

But that’s never going to happen

“Around 70 percent of all the vulnerabilities in Microsoft
products addressed through a security update each
year are memory safety issues”
Matt Miller, Microsoft security engineer, Feb 2019



Memory Management

Maybe the best approach is to write good and correct code in
the first place?

But that’s never going to happen

“Around 70 percent of all the vulnerabilities in Microsoft
products addressed through a security update each
year are memory safety issues”
Matt Miller, Microsoft security engineer, Feb 2019



Memory Management

Memory safety bugs in C and C++ continue to be the
most-difficult-to-address source of incorrectness. We
invest a great deal of effort and resources into de-
tecting, fixing, and mitigating this class of bugs, and
these efforts are effective in preventing a large number
of bugs from making it into Android releases. Yet in
spite of these efforts, memory safety bugs continue to
be a top contributor of stability issues, and consistently
represent approximately 70% of Android’s high severity
security vulnerabilities.
Jeff Vander Stoep and Stephen Hines, Android Team,
April 2021



Memory Management

Manual memory management bugs include:

• use after free
• double free
• invalid free (passing a non-malloced pointer to free)
• no check for allocation fail
• memory leak

None of these are applicable to a GC language



Memory Management

Manual memory management bugs include:

• use after free
• double free
• invalid free (passing a non-malloced pointer to free)
• no check for allocation fail
• memory leak

None of these are applicable to a GC language



Memory Management

Other memory errors include:

• reading uninitialised memory
• accessing beyond the bounds of allocated memory, e.g.,

beyond the ends of a vector

affecting both GC and MMM

Some languages have memory access checking to avoid these
kinds of errors, but checking will slow the running of your
program down



Memory Management

Other memory errors include:

• reading uninitialised memory
• accessing beyond the bounds of allocated memory, e.g.,

beyond the ends of a vector

affecting both GC and MMM

Some languages have memory access checking to avoid these
kinds of errors, but checking will slow the running of your
program down



Memory Management

For example, x[n] = 42;

• Checked: the running code first checks to make sure that n
is not beyond the ends of the vector; then it does the
assignment

• Safe, but slower
• Unchecked: the code just does the assignment
• Faster, but allows bugs



Memory Management

For example, x[n] = 42;

• Checked: the running code first checks to make sure that n
is not beyond the ends of the vector; then it does the
assignment

• Safe, but slower

• Unchecked: the code just does the assignment
• Faster, but allows bugs



Memory Management

For example, x[n] = 42;

• Checked: the running code first checks to make sure that n
is not beyond the ends of the vector; then it does the
assignment

• Safe, but slower
• Unchecked: the code just does the assignment

• Faster, but allows bugs



Memory Management

For example, x[n] = 42;

• Checked: the running code first checks to make sure that n
is not beyond the ends of the vector; then it does the
assignment

• Safe, but slower
• Unchecked: the code just does the assignment
• Faster, but allows bugs



Memory Management

C does unchecked vector accesses

• because it is fast
• very occasionally it is what the programmer wanted: e.g.,
x[-1] = 23; is valid C, and very occasionally useful to
careful programmers

• (And C vectors don’t include information about their length,
anyway)



Memory Management

C does unchecked vector accesses

• because it is fast

• very occasionally it is what the programmer wanted: e.g.,
x[-1] = 23; is valid C, and very occasionally useful to
careful programmers

• (And C vectors don’t include information about their length,
anyway)



Memory Management

C does unchecked vector accesses

• because it is fast
• very occasionally it is what the programmer wanted: e.g.,
x[-1] = 23; is valid C, and very occasionally useful to
careful programmers

• (And C vectors don’t include information about their length,
anyway)



Memory Management

C does unchecked vector accesses

• because it is fast
• very occasionally it is what the programmer wanted: e.g.,
x[-1] = 23; is valid C, and very occasionally useful to
careful programmers

• (And C vectors don’t include information about their length,
anyway)



Memory Management

Python checks vector accesses

• The Python design philosophy is safety before speed

Exercise What does x[-1] do in Python?

Exercise And Java, Rust, C++, . . . ?



Memory Management

Python checks vector accesses

• The Python design philosophy is safety before speed

Exercise What does x[-1] do in Python?

Exercise And Java, Rust, C++, . . . ?



Memory Management

Python checks vector accesses

• The Python design philosophy is safety before speed

Exercise What does x[-1] do in Python?

Exercise And Java, Rust, C++, . . . ?



Memory Management

Python checks vector accesses

• The Python design philosophy is safety before speed

Exercise What does x[-1] do in Python?

Exercise And Java, Rust, C++, . . . ?



Memory Management

We have a trade-off of speed against correctness

So people have developed tools to check code in languages
that don’t check for themselves

Some tools work at compile time; some at run time



Memory Management

We have a trade-off of speed against correctness

So people have developed tools to check code in languages
that don’t check for themselves

Some tools work at compile time; some at run time



Memory Management

We have a trade-off of speed against correctness

So people have developed tools to check code in languages
that don’t check for themselves

Some tools work at compile time; some at run time



Memory Management

Exercise Read about valgrind, Allinea,
AddressSanitizer and other runtime memory checking tools

Exercise Do such tools imply there is a problem with the
design of the language?

Exercise Some clever compilers use proofs to avoid the need
for run-time checking. E.g., somehow it can prove that n cannot
be too large in the access x[n]. Read about this

Exercise Find out whether your favourite language checks or
not; if it checks, what are the overheads?



Memory Management

Exercise Read about valgrind, Allinea,
AddressSanitizer and other runtime memory checking tools

Exercise Do such tools imply there is a problem with the
design of the language?

Exercise Some clever compilers use proofs to avoid the need
for run-time checking. E.g., somehow it can prove that n cannot
be too large in the access x[n]. Read about this

Exercise Find out whether your favourite language checks or
not; if it checks, what are the overheads?



Memory Management

Exercise Read about valgrind, Allinea,
AddressSanitizer and other runtime memory checking tools

Exercise Do such tools imply there is a problem with the
design of the language?

Exercise Some clever compilers use proofs to avoid the need
for run-time checking. E.g., somehow it can prove that n cannot
be too large in the access x[n]. Read about this

Exercise Find out whether your favourite language checks or
not; if it checks, what are the overheads?



Memory Management

Exercise Read about valgrind, Allinea,
AddressSanitizer and other runtime memory checking tools

Exercise Do such tools imply there is a problem with the
design of the language?

Exercise Some clever compilers use proofs to avoid the need
for run-time checking. E.g., somehow it can prove that n cannot
be too large in the access x[n]. Read about this

Exercise Find out whether your favourite language checks or
not; if it checks, what are the overheads?


