
Memory Management
GC

GC can be problematic in systems that require real-time
behaviour, e.g., car controls, video streaming

The code to do a GC quite often needs the main computation to
pause (“Stop the world” collection) while it searches for
inaccessible chunks of memory

These pauses can be considerable fractions of a second

Leading to glitches in your video; or your car crashing into a wall

A GC pause will inevitably happen at the most inconvenient
point in time

Normally when an object needs to be allocated and memory is
full
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Memory Management
GC

Stop the World is increasingly bad when you have multiple
parallel threads: you have to stop them all

There are versions of GC (ephemeral GC, generational GC,
concurrent GC, etc.) that try to minimise this disruptive
behaviour, but it is very hard to get a guaranteed good
behaviour (no inconvenient or dangerous glitches)

The more complex concurrent GC uses an extra thread to do
the GC while the other threads continue to run

But it (a) uses a thread that could be working and (b) messes
up memory accesses (caching) for the working threads causing
them to slow down
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Memory Management
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You can find many papers describing GC implementations that
strive towards decreasing GC pause times, e.g., for Java and
Go

But they all increase other things, e.g., memory usage or
allocation time or overall CPU usage

So comparing GC algorithms purely by pause time is an
incomplete picture
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Memory Management
GC

So real-time systems usually avoid automatic GC, and only
employ languages using manual memory management (like C
and C++)

Similarly, close-to-the-machine applications (e.g., operating
systems) avoid GC as a garbage collector may well move live
values around in memory as part of their tidying up to avoid
memory fragmentation

Low level programs often need to keep a close control on
where things are located in memory and this would be a huge
complicating factor

Plus they don’t like the potentially non-deterministic behaviour
of GC (when will the GC happen?), and again prefer the
deterministic behaviour of manual memory management
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Memory Management
GC vs. Manual

Note that manual memory management does have a cost
(malloc and free are not free!) but that cost is spread
throughout the running of the program, and not in big pauses
when the GC runs

Furthermore, GC generally has more work to do overall as it
needs to search throughout memory to discover inaccessible
memory, while free doesn’t

GCs ignore information in the code that could help, e.g., when
an object is no longer accessible might be possible to be
determined from the code. But common language design
means you can’t always determine this, thus the need for GC in
such languages
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Memory Management
GC vs. Manual

GC code tends to have a larger memory footprint as it might
need up to twice the space that data would normally require:
the space for the data plus an equal amount of space for the
allocation and GC mechanisms

Also it typically fills memory before starting a GC sweep
through memory, while manual management (when used
correctly) tends to keep memory sprawl in check

Sprawl can be a problem in memory-limited embedded systems
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But on the plus side, a GC deallocates many objects in one
sweep which might be less overhead than deallocating many
objects individually in manual system (amortisation of
deallocation costs, particularly in parallel systems where
memory allocation might need to acquire locks)

And GC applications can need less development time, as the
programmer has less “to get right”

In a world of big memory and “fast enough” processors
development time might be the most important factor!
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GC vs. Manual

These days business are often more worried about code
development time (get the product out the door) than code
execution speed (it goes fast enough)

Or code correctness (get the customer to find the bugs)

But there are a lot of cases (embedded systems) where the
processor is not particularly fast, or where there is not a huge
amount of memory

Or where customer-discovered bugs are not acceptable
(safety-critical systems)
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Memory Management

Exercise Find out the overhead of malloc and free in C, or
the equivalent in your favourite language

Exercise Read about the concurrent GC in Go

Note for Gamers: at 60fps you only have 16ms per frame. So
even 1ms for a GC is troublesome

Exercise Using Java for high-frequency trading (in banks) has
problems with GC latency. Read about this

Exercise There has been talk of building specific hardware
support for GC: a “GC coprocessor”. Read about this.



Other Memory Management

So the problem is we need something to keep track of values
(objects/data) so that the bytes they occupy can be reclaimed
and reused when that value is no longer needed by the program

With manual memory management it is the programmer’s
responsibility

With GC it is the GC subsystem’s responsibility

While these two cases cover a lot of existing languages, there
are other approaches the try to tackle the above two’s
shortcomings

Namely relying on the programmer is not a good idea and GCs
have unpredictable or undesirable behaviour
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Other Memory Management

Runtime Tracking of Allocations

Swift and Python (amongst others) use runtime reference
counting to keep track of values

Each value has an internal counter that is incremented every
time a new reference is made to that value; and decremented
when a reference is dropped

When the counter reaches zero, the value’s memory is
deallocated
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So in
y = x
the count of the value that y used to refer to is decremented
while the count of the value that x refers to is incremented

If there are no other references to the old value of y, its count
will now be zero and so can be deallocated: its memory is freed
by the runtime

If there are other references, its count will be non-zero, so the
value is not deallocated
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Other Memory Management
Runtime Tracking

Advantages: no GC, no free, as the runtime does this
automatically

Disadvantages: a runtime overhead on every assignment (and
most programs have lots of assignments!); reference loops (a
circle of values, each containing a reference to the next) can
hold on to inaccessible memory
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Other Memory Management
Runtime Tracking

In certain cases, a good compiler might be able to eliminate
some of these overheads if it can determine statically (i.e., by
analysis of the code) it is not needed

But this is very hard in general, often even impossible, so not
often well supported
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Runtime Tracking

Exercise Look up sys.getrefcount() in Python

Exercise Python also has a GC. Why?

Exercise Swift doesn’t have a GC, but uses weak references to
fix the doubly-linked list problem. Read about this

Advanced Exercise The new M1 chip from Apple has special
support in its instruction set to support Swift’s reference
counting. Read about this



Other Memory Management

Compiletime Tracking of Allocations

Rust uses compiler analysis of the source code to keep track of
values

The compiler can determine exactly where in the code a value
has no more references to it and so can compile exactly the
deallocations needed

Various language restrictions on the use of values mean this is
possible to do in Rust, while being impossible in other
languages
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Compiletime Tracking

For example, many languages can make references to values
with no restriction and that makes this kind of compile time
analysis impossible for those languages (so, e.g., Swift has to
do this tracking at runtime by the reference count)

if random() > 0.5 {

y = x;

}

else {

y = w;

}

How many references to the value in x are there now?
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Compiletime Tracking

Rust has a strict notion of which variable owns a value that
makes this tracking possible by the compiler

This (very roughly) is ensuring that there is only ever one
reference to a value

Exercise The above is a huge simplification. Read about what
Rust actually does
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Other Memory Management
Compiletime Tracking

Advantages: no GC; no free; no runtime overhead for tracking;
makes many kinds of memory errors impossible; also makes
certain kinds of parallelism errors impossible

Disadvantages: the language has the concepts of lifetimes and
ownership for values that programmers coming from other
languages find hard to grasp and which (correctly) makes
certain kinds of things you would do in those other languages
impossible in Rust
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Exercise For advanced C++ programmers: compare the idea
of C++ move semantics

Exercise For advanced Swift programmers: compare the idea
of exclusivity enforcement on variables

Advanced Exercise Read about linear and affine types



Memory Management

On the use of memory-safe (non-MMM) languages in Android
(Rust, Java, Kotlin):

“With less memory-unsafe code (C, C++) entering Android,
memory safety flaws went from 76% of Android vulnerabilities
in 2019 to 35% in 2022

2022 was the first year where memory safety vulnerabilities did
not form a majority of Android’s vulnerabilities

And because memory safety flaws accounted for most of the
critical issues, the vulnerabilities that have surfaced have
proven to be less severe”

Jeffrey Vander Stoep, Google Security Blog, December 2022
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Before we conclude memory management: note that “garbage
collection” is another phrase used in many ways. Some people
regard malloc/free as “manual GC”

Similarly reference counting is GC for some people

We shall restrict ourselves to the most common usage of GC
that means “subsystem that scans and collects inaccessible
memory”
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If Java had true garbage collection, most programs
would delete themselves upon execution
Robert Sewell

[C# is] sort of Java with reliability, productivity and se-
curity deleted
James Gosling
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Types

We now look at how types are treated in various very different
ways

Types are very important to modern programming languages:
some people spend their lives purely thinking about types

Types are seen as an essential aid to the programmer, to help
them write larger, correct programs

We can classify according to how types are treated

Note we are not specifically talking about OO languages here
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Types and Classes have an interesting relationship

They are sometimes the same, but sometimes different

For example, Common Lisp has both and they are different
things, though connected

Java has both int and Integer. Primitive types in Java are
not classes (often regarded as a flaw in the design of Java!)

And, of course, C and Fortran and Pascal, etc., have types, but
no classes



Types vs. Classes

Types and Classes have an interesting relationship

They are sometimes the same, but sometimes different

For example, Common Lisp has both and they are different
things, though connected

Java has both int and Integer. Primitive types in Java are
not classes (often regarded as a flaw in the design of Java!)

And, of course, C and Fortran and Pascal, etc., have types, but
no classes



Types vs. Classes

Types and Classes have an interesting relationship

They are sometimes the same, but sometimes different

For example, Common Lisp has both and they are different
things, though connected

Java has both int and Integer. Primitive types in Java are
not classes (often regarded as a flaw in the design of Java!)

And, of course, C and Fortran and Pascal, etc., have types, but
no classes



Types vs. Classes

Types and Classes have an interesting relationship

They are sometimes the same, but sometimes different

For example, Common Lisp has both and they are different
things, though connected

Java has both int and Integer. Primitive types in Java are
not classes (often regarded as a flaw in the design of Java!)

And, of course, C and Fortran and Pascal, etc., have types, but
no classes



Types vs. Classes

Types and Classes have an interesting relationship

They are sometimes the same, but sometimes different

For example, Common Lisp has both and they are different
things, though connected

Java has both int and Integer. Primitive types in Java are
not classes (often regarded as a flaw in the design of Java!)

And, of course, C and Fortran and Pascal, etc., have types, but
no classes



Types vs. Classes

We shall be talking about types as a separate concept from
classes

So the following also applies to non-OO languages like C



Types vs. Classes

We shall be talking about types as a separate concept from
classes

So the following also applies to non-OO languages like C



Types

Static typing: C, Haskell, Java, . . .

• expressions and types checked at compile time for
correctness

• typed variables and functions
• the type of a value is determined by the type of the variable

it was read from

Static typing is quite common in modern languages, and
sometimes optional (Maple, Common Lisp)
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Types

Take care over this: in a dynamically typed language the
variables do not have types associated

Values have types, encoded into themselves in various ways
(e.g., in the header of the value structure)

A given variable may hold values of different types at different
times

x = 1;
x = "hello";
is valid in such a language, though arguably poor code as the
programmer is clearly confused on the role of x in this program
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Types

Exercise And the classifications are not exclusive: read about
gradual typing that mixes static and dynamic

Exercise Find out how much overhead Java, Python, etc., have
on each (non-primitive) value to encode its type (and other
things)



Types

Strong typing: (a bit of a fuzzy concept) a value has a definite
type and no implicit conversions between types

• expressions checked for type correctness at compile or
runtime

• little (preferably: no) automatic type conversions, e.g.,
between integer and floating point

Python does no static checking, but does enforce moderately
strong typing at runtime

Perl is more forgiving on mixing types in an expression, e.g.,
’2’ + 3

“Strong” seems to cover different ideas in different peoples’
minds, and possibly ought to be avoided as a concept



Types

Strong typing: (a bit of a fuzzy concept) a value has a definite
type and no implicit conversions between types

• expressions checked for type correctness at compile or
runtime

• little (preferably: no) automatic type conversions, e.g.,
between integer and floating point

Python does no static checking, but does enforce moderately
strong typing at runtime

Perl is more forgiving on mixing types in an expression, e.g.,
’2’ + 3

“Strong” seems to cover different ideas in different peoples’
minds, and possibly ought to be avoided as a concept



Types

Strong typing: (a bit of a fuzzy concept) a value has a definite
type and no implicit conversions between types

• expressions checked for type correctness at compile or
runtime

• little (preferably: no) automatic type conversions, e.g.,
between integer and floating point

Python does no static checking, but does enforce moderately
strong typing at runtime

Perl is more forgiving on mixing types in an expression, e.g.,
’2’ + 3

“Strong” seems to cover different ideas in different peoples’
minds, and possibly ought to be avoided as a concept



Types

Strong typing: (a bit of a fuzzy concept) a value has a definite
type and no implicit conversions between types

• expressions checked for type correctness at compile or
runtime

• little (preferably: no) automatic type conversions, e.g.,
between integer and floating point

Python does no static checking, but does enforce moderately
strong typing at runtime

Perl is more forgiving on mixing types in an expression, e.g.,
’2’ + 3

“Strong” seems to cover different ideas in different peoples’
minds, and possibly ought to be avoided as a concept



Types

Strong typing: (a bit of a fuzzy concept) a value has a definite
type and no implicit conversions between types

• expressions checked for type correctness at compile or
runtime

• little (preferably: no) automatic type conversions, e.g.,
between integer and floating point

Python does no static checking, but does enforce moderately
strong typing at runtime

Perl is more forgiving on mixing types in an expression, e.g.,
’2’ + 3

“Strong” seems to cover different ideas in different peoples’
minds, and possibly ought to be avoided as a concept



Types

Strong typing: (a bit of a fuzzy concept) a value has a definite
type and no implicit conversions between types

• expressions checked for type correctness at compile or
runtime

• little (preferably: no) automatic type conversions, e.g.,
between integer and floating point

Python does no static checking, but does enforce moderately
strong typing at runtime

Perl is more forgiving on mixing types in an expression, e.g.,
’2’ + 3

“Strong” seems to cover different ideas in different peoples’
minds, and possibly ought to be avoided as a concept



Types

Perhaps “strong” is better used as a comparator, e.g., “this
language is more strongly typed than that one”

E.g., “Rust is more strongly typed than C”

Weak typing: not strongly typed
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Types

For example, C is fairly weakly typed and it is common (and
bad) to write:

double x = 1; // poor code!

Here, the int value is automatically coerced to a double value
before being bound to x

Exercise Compare sqrt(3/2) with sqrt(3.0/2.0) in C.
Then do the same in Python2, Python3, Haskell and other
languages
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Remember: even though C float and int might both use 32
bits to represent a number, they are very different things: the
integer 1 might be represented by

00000000 00000000 00000000 00000001

while the float 1.0 might be represented in IEEE by

00111111 10000000 00000000 00000000

In programming languages, floating point and integers are
different types that behave very differently and you shouldn’t
casually mix them
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The confusion possibly arises because in Mathematics we have
the natural inclusion of integers within the reals, where the first
are regarded as a subset of the second

Mathematicians do this as it is convenient, but in CS we have to
be more careful
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Exercise Consider the difference between:

• Converting an int to a float where we want to preserve
the “meaning”, e.g., 1 becomes 1.0

• Converting an int to a float where we want to preserve
the bits, e.g.,
00000000 00000000 00000000 00000001 as an int
becomes
00000000 00000000 00000000 00000001 as a float


