
Types
Mixing types

Some languages, like C, Perl and Python, like to be “helpful” to
the programmer

Given code like 1.0 + 2 the compiler says “well, the
programmer obviously meant 2 to be a floating point value, so
I’ll change it to 2.0 for them”

The problem being that the compiler has to guess what the
programmer “meant” and can’t always get that guess correct

So sometimes doing things that the programmer doesn’t
expect, particularly in more complicated examples



Types
Mixing types

Some languages, like C, Perl and Python, like to be “helpful” to
the programmer

Given code like 1.0 + 2 the compiler says “well, the
programmer obviously meant 2 to be a floating point value, so
I’ll change it to 2.0 for them”

The problem being that the compiler has to guess what the
programmer “meant” and can’t always get that guess correct

So sometimes doing things that the programmer doesn’t
expect, particularly in more complicated examples



Types
Mixing types

Some languages, like C, Perl and Python, like to be “helpful” to
the programmer

Given code like 1.0 + 2 the compiler says “well, the
programmer obviously meant 2 to be a floating point value, so
I’ll change it to 2.0 for them”

The problem being that the compiler has to guess what the
programmer “meant” and can’t always get that guess correct

So sometimes doing things that the programmer doesn’t
expect, particularly in more complicated examples



Types
Mixing types

Some languages, like C, Perl and Python, like to be “helpful” to
the programmer

Given code like 1.0 + 2 the compiler says “well, the
programmer obviously meant 2 to be a floating point value, so
I’ll change it to 2.0 for them”

The problem being that the compiler has to guess what the
programmer “meant” and can’t always get that guess correct

So sometimes doing things that the programmer doesn’t
expect, particularly in more complicated examples



Types
Mixing types

On the other hand, some languages, like Rust, try to be precise

The compiler says, “something wrong here, integers and
floating points are very different things — the programmer must
be confused, so I won’t compile this until they’ve fixed the
problem”

A trade-off between languages that are “fast” or “easy” to
program in, but the code might not be correct; against
languages that need more time to program in, but the code is
more likely to be correct



Types
Mixing types

On the other hand, some languages, like Rust, try to be precise

The compiler says, “something wrong here, integers and
floating points are very different things — the programmer must
be confused, so I won’t compile this until they’ve fixed the
problem”

A trade-off between languages that are “fast” or “easy” to
program in, but the code might not be correct; against
languages that need more time to program in, but the code is
more likely to be correct



Types
Mixing types

On the other hand, some languages, like Rust, try to be precise

The compiler says, “something wrong here, integers and
floating points are very different things — the programmer must
be confused, so I won’t compile this until they’ve fixed the
problem”

A trade-off between languages that are “fast” or “easy” to
program in, but the code might not be correct; against
languages that need more time to program in, but the code is
more likely to be correct



Aside
Coerce vs. Cast

Some terminology: “cast” is an explicit change of type, such as

double ns = (double)secs/1e9;

where secs is int

While “coerce” is an implicit change of type, such as

double x = 1/2;

where the int value of the expression on the right is
automatically changed to a double to store in x

It is usually better for code to be explicit, so many people (and
languages) don’t like implicit casting

The value of x above is 0.000



Aside
Coerce vs. Cast

Some terminology: “cast” is an explicit change of type, such as

double ns = (double)secs/1e9;

where secs is int

While “coerce” is an implicit change of type, such as

double x = 1/2;

where the int value of the expression on the right is
automatically changed to a double to store in x

It is usually better for code to be explicit, so many people (and
languages) don’t like implicit casting

The value of x above is 0.000



Aside
Coerce vs. Cast

Some terminology: “cast” is an explicit change of type, such as

double ns = (double)secs/1e9;

where secs is int

While “coerce” is an implicit change of type, such as

double x = 1/2;

where the int value of the expression on the right is
automatically changed to a double to store in x

It is usually better for code to be explicit, so many people (and
languages) don’t like implicit casting

The value of x above is 0.000



Aside
Coerce vs. Cast

Some terminology: “cast” is an explicit change of type, such as

double ns = (double)secs/1e9;

where secs is int

While “coerce” is an implicit change of type, such as

double x = 1/2;

where the int value of the expression on the right is
automatically changed to a double to store in x

It is usually better for code to be explicit, so many people (and
languages) don’t like implicit casting

The value of x above is 0.000



Aside
Coerce vs. Cast

Some terminology: “cast” is an explicit change of type, such as

double ns = (double)secs/1e9;

where secs is int

While “coerce” is an implicit change of type, such as

double x = 1/2;

where the int value of the expression on the right is
automatically changed to a double to store in x

It is usually better for code to be explicit, so many people (and
languages) don’t like implicit casting

The value of x above is 0.000



Aside
Coerce vs. Cast

Some terminology: “cast” is an explicit change of type, such as

double ns = (double)secs/1e9;

where secs is int

While “coerce” is an implicit change of type, such as

double x = 1/2;

where the int value of the expression on the right is
automatically changed to a double to store in x

It is usually better for code to be explicit, so many people (and
languages) don’t like implicit casting

The value of x above is 0.000



Types
Mixing types

A strongly typed language would refuse to compile such code,
and require the programmer to get the types right, or insert
explicit casts

This is bad C code:
double x = 1;
int n = sqrt(2);

This is better:
double x = 1.0;
int n = (int)sqrt(2.0);

as it makes the programmer’s thinking much more clear



Types
Mixing types

A strongly typed language would refuse to compile such code,
and require the programmer to get the types right, or insert
explicit casts

This is bad C code:
double x = 1;
int n = sqrt(2);

This is better:
double x = 1.0;
int n = (int)sqrt(2.0);

as it makes the programmer’s thinking much more clear



Types
Mixing types

A strongly typed language would refuse to compile such code,
and require the programmer to get the types right, or insert
explicit casts

This is bad C code:
double x = 1;
int n = sqrt(2);

This is better:
double x = 1.0;
int n = (int)sqrt(2.0);

as it makes the programmer’s thinking much more clear



Types
Mixing types

Types are there to help you avoid bugs; don’t throw away this
help!

Advanced exercise Read about the various kinds of casting in
C++, such as reinterpret cast and static cast

Exercise What does Java do for float x = 1.0;? What is the
correct code?



Types
Mixing types

Types are there to help you avoid bugs; don’t throw away this
help!

Advanced exercise Read about the various kinds of casting in
C++, such as reinterpret cast and static cast

Exercise What does Java do for float x = 1.0;? What is the
correct code?



Types

Untyped : assembly language, BCPL, Forth, . . .

• up to the programmer how to interpret a value
• all values are just presented as a machine byte or word

Not so widely used as these days for general computing as
types are seen as an essential aid to the programmer

Though assembly language is still more widely used than you
might expect

And even assembly languages do tend to treat floating point
numbers differently from integers/pointers/bit patterns



Types

Untyped : assembly language, BCPL, Forth, . . .

• up to the programmer how to interpret a value

• all values are just presented as a machine byte or word

Not so widely used as these days for general computing as
types are seen as an essential aid to the programmer

Though assembly language is still more widely used than you
might expect

And even assembly languages do tend to treat floating point
numbers differently from integers/pointers/bit patterns



Types

Untyped : assembly language, BCPL, Forth, . . .

• up to the programmer how to interpret a value
• all values are just presented as a machine byte or word

Not so widely used as these days for general computing as
types are seen as an essential aid to the programmer

Though assembly language is still more widely used than you
might expect

And even assembly languages do tend to treat floating point
numbers differently from integers/pointers/bit patterns



Types

Untyped : assembly language, BCPL, Forth, . . .

• up to the programmer how to interpret a value
• all values are just presented as a machine byte or word

Not so widely used as these days for general computing as
types are seen as an essential aid to the programmer

Though assembly language is still more widely used than you
might expect

And even assembly languages do tend to treat floating point
numbers differently from integers/pointers/bit patterns



Types

Untyped : assembly language, BCPL, Forth, . . .

• up to the programmer how to interpret a value
• all values are just presented as a machine byte or word

Not so widely used as these days for general computing as
types are seen as an essential aid to the programmer

Though assembly language is still more widely used than you
might expect

And even assembly languages do tend to treat floating point
numbers differently from integers/pointers/bit patterns



Types

Untyped : assembly language, BCPL, Forth, . . .

• up to the programmer how to interpret a value
• all values are just presented as a machine byte or word

Not so widely used as these days for general computing as
types are seen as an essential aid to the programmer

Though assembly language is still more widely used than you
might expect

And even assembly languages do tend to treat floating point
numbers differently from integers/pointers/bit patterns



Types
Feet

• BCPL: You shoot yourself somewhere in the leg—you can’t
get any finer resolution than that

• Forth: Foot yourself in the shoot



Types
Feet

• BCPL: You shoot yourself somewhere in the leg—you can’t
get any finer resolution than that
• Forth: Foot yourself in the shoot



Types

Comparing these kinds of types:

• Dynamic: flexibility for the programmer, particularly in
prototyping where fast coding through few restrictions is
important

• Static: types checked at compile time, catching some bugs
in the source before the program is run. Consequently,
compilation is usually slower, but the result is likely less
buggy
• Untyped: no type errors possible, and no checking done

for the programmer



Types

Comparing these kinds of types:

• Dynamic: flexibility for the programmer, particularly in
prototyping where fast coding through few restrictions is
important
• Static: types checked at compile time, catching some bugs

in the source before the program is run. Consequently,
compilation is usually slower, but the result is likely less
buggy

• Untyped: no type errors possible, and no checking done
for the programmer



Types

Comparing these kinds of types:

• Dynamic: flexibility for the programmer, particularly in
prototyping where fast coding through few restrictions is
important
• Static: types checked at compile time, catching some bugs

in the source before the program is run. Consequently,
compilation is usually slower, but the result is likely less
buggy
• Untyped: no type errors possible, and no checking done

for the programmer



Types

There are other differences, too

We can look at what each do when presented with source code
like a+b

• what a compiler needs to do with it
• what happens when the code is running

An interpreter would need to do both stages above while
executing



Types

There are other differences, too

We can look at what each do when presented with source code
like a+b

• what a compiler needs to do with it
• what happens when the code is running

An interpreter would need to do both stages above while
executing



Types

There are other differences, too

We can look at what each do when presented with source code
like a+b

• what a compiler needs to do with it

• what happens when the code is running

An interpreter would need to do both stages above while
executing



Types

There are other differences, too

We can look at what each do when presented with source code
like a+b

• what a compiler needs to do with it
• what happens when the code is running

An interpreter would need to do both stages above while
executing



Types

There are other differences, too

We can look at what each do when presented with source code
like a+b

• what a compiler needs to do with it
• what happens when the code is running

An interpreter would need to do both stages above while
executing



Types

For any such operation, a compiler for a dynamic language will
need to generate and output code that

• checks if a is a number
• checks if b is a number
• if so call the appropriate add function
• else does some coercions then adds; or just signals an

error, as appropriate



Types

Then at runtime all this rather complicated code will be
executed

There must be a runtime check (in the absence of clever
optimisations) since the values of a and b can be of any types

Thus a lot of checking overhead before actually doing the
expected operation: this can easily be much larger than the
operation itself!

This can be many dozens of CPU instructions overhead

Exercise Read the ECMA (JavaScript) standard to discover the
10 step process that it requires for addition

Exercise Investigate how an add operation gets executed in
Python



Types

Then at runtime all this rather complicated code will be
executed

There must be a runtime check (in the absence of clever
optimisations) since the values of a and b can be of any types

Thus a lot of checking overhead before actually doing the
expected operation: this can easily be much larger than the
operation itself!

This can be many dozens of CPU instructions overhead

Exercise Read the ECMA (JavaScript) standard to discover the
10 step process that it requires for addition

Exercise Investigate how an add operation gets executed in
Python



Types

Then at runtime all this rather complicated code will be
executed

There must be a runtime check (in the absence of clever
optimisations) since the values of a and b can be of any types

Thus a lot of checking overhead before actually doing the
expected operation: this can easily be much larger than the
operation itself!

This can be many dozens of CPU instructions overhead

Exercise Read the ECMA (JavaScript) standard to discover the
10 step process that it requires for addition

Exercise Investigate how an add operation gets executed in
Python



Types

Then at runtime all this rather complicated code will be
executed

There must be a runtime check (in the absence of clever
optimisations) since the values of a and b can be of any types

Thus a lot of checking overhead before actually doing the
expected operation: this can easily be much larger than the
operation itself!

This can be many dozens of CPU instructions overhead

Exercise Read the ECMA (JavaScript) standard to discover the
10 step process that it requires for addition

Exercise Investigate how an add operation gets executed in
Python



Types

Then at runtime all this rather complicated code will be
executed

There must be a runtime check (in the absence of clever
optimisations) since the values of a and b can be of any types

Thus a lot of checking overhead before actually doing the
expected operation: this can easily be much larger than the
operation itself!

This can be many dozens of CPU instructions overhead

Exercise Read the ECMA (JavaScript) standard to discover the
10 step process that it requires for addition

Exercise Investigate how an add operation gets executed in
Python



Types

Then at runtime all this rather complicated code will be
executed

There must be a runtime check (in the absence of clever
optimisations) since the values of a and b can be of any types

Thus a lot of checking overhead before actually doing the
expected operation: this can easily be much larger than the
operation itself!

This can be many dozens of CPU instructions overhead

Exercise Read the ECMA (JavaScript) standard to discover the
10 step process that it requires for addition

Exercise Investigate how an add operation gets executed in
Python



Types

Static. The compiler will determine the types of a and b (and
therefore the types of the values stored in a and b) and
generate

• code for the appropriate add operation (maybe with
appropriate coercions, if the language allows such things)

It does not need to generate code to check the values of a and
b as they must be of the correct types when the code reaches
that point

At runtime just this simple add operation will be executed

This might be just a single CPU instruction

No runtime checks are needed



Types

Static. The compiler will determine the types of a and b (and
therefore the types of the values stored in a and b) and
generate

• code for the appropriate add operation (maybe with
appropriate coercions, if the language allows such things)

It does not need to generate code to check the values of a and
b as they must be of the correct types when the code reaches
that point

At runtime just this simple add operation will be executed

This might be just a single CPU instruction

No runtime checks are needed



Types

Static. The compiler will determine the types of a and b (and
therefore the types of the values stored in a and b) and
generate

• code for the appropriate add operation (maybe with
appropriate coercions, if the language allows such things)

It does not need to generate code to check the values of a and
b as they must be of the correct types when the code reaches
that point

At runtime just this simple add operation will be executed

This might be just a single CPU instruction

No runtime checks are needed



Types

Static. The compiler will determine the types of a and b (and
therefore the types of the values stored in a and b) and
generate

• code for the appropriate add operation (maybe with
appropriate coercions, if the language allows such things)

It does not need to generate code to check the values of a and
b as they must be of the correct types when the code reaches
that point

At runtime just this simple add operation will be executed

This might be just a single CPU instruction

No runtime checks are needed



Types

Static. The compiler will determine the types of a and b (and
therefore the types of the values stored in a and b) and
generate

• code for the appropriate add operation (maybe with
appropriate coercions, if the language allows such things)

It does not need to generate code to check the values of a and
b as they must be of the correct types when the code reaches
that point

At runtime just this simple add operation will be executed

This might be just a single CPU instruction

No runtime checks are needed



Types

Untyped. The compiler will output code to add the values
(presumably an integer add) regardless of what the
programmer thinks they happen to be

At runtime this simple operation will be executed

There’s nothing that it could check!

Exercise Compare the code output by a static language and an
untyped language



Types

Untyped. The compiler will output code to add the values
(presumably an integer add) regardless of what the
programmer thinks they happen to be

At runtime this simple operation will be executed

There’s nothing that it could check!

Exercise Compare the code output by a static language and an
untyped language



Types

Untyped. The compiler will output code to add the values
(presumably an integer add) regardless of what the
programmer thinks they happen to be

At runtime this simple operation will be executed

There’s nothing that it could check!

Exercise Compare the code output by a static language and an
untyped language



Types

Untyped. The compiler will output code to add the values
(presumably an integer add) regardless of what the
programmer thinks they happen to be

At runtime this simple operation will be executed

There’s nothing that it could check!

Exercise Compare the code output by a static language and an
untyped language



Types

If I have a drawer marked “Socks” I don’t need to check what
comes out of it before I put them on my feet

If I have an unmarked drawer, I need to look at what I get, first



Types

If I have a drawer marked “Socks” I don’t need to check what
comes out of it before I put them on my feet

If I have an unmarked drawer, I need to look at what I get, first



Types

A brief peek into the Object Oriented world. . .

It’s not just variables or their values that can be static or
dynamic: in the case of OO method lookup we can also see
significant differences

Suppose we have code a.foo()



Types

A brief peek into the Object Oriented world. . .

It’s not just variables or their values that can be static or
dynamic: in the case of OO method lookup we can also see
significant differences

Suppose we have code a.foo()



Types

A brief peek into the Object Oriented world. . .

It’s not just variables or their values that can be static or
dynamic: in the case of OO method lookup we can also see
significant differences

Suppose we have code a.foo()



Types

Dynamic lookup. The compiler will generate

• code to choose the correct method to call on the current
value of a (determined by the type of the current value)
• then code to call the chosen method

At runtime the code to choose the method needs to run first:
the choosing is done at runtime

Again, overhead before the method itself can be run

In a dynamic lookup, calling a method can be considerably
slower to execute than calling a function



Types

Dynamic lookup. The compiler will generate

• code to choose the correct method to call on the current
value of a (determined by the type of the current value)
• then code to call the chosen method

At runtime the code to choose the method needs to run first:
the choosing is done at runtime

Again, overhead before the method itself can be run

In a dynamic lookup, calling a method can be considerably
slower to execute than calling a function



Types

Dynamic lookup. The compiler will generate

• code to choose the correct method to call on the current
value of a (determined by the type of the current value)
• then code to call the chosen method

At runtime the code to choose the method needs to run first:
the choosing is done at runtime

Again, overhead before the method itself can be run

In a dynamic lookup, calling a method can be considerably
slower to execute than calling a function



Types

Dynamic lookup. The compiler will generate

• code to choose the correct method to call on the current
value of a (determined by the type of the current value)
• then code to call the chosen method

At runtime the code to choose the method needs to run first:
the choosing is done at runtime

Again, overhead before the method itself can be run

In a dynamic lookup, calling a method can be considerably
slower to execute than calling a function



Types

Static lookup. The compiler will determine the type of a, find the
appropriate method, and output

• code to call the method

At runtime the code of the method is called directly on the value
of a as the lookup has already been done by the compiler

So for a static lookup calling a method is just as fast to execute
as calling a function

Though this is not the whole story: more on this later



Types

Static lookup. The compiler will determine the type of a, find the
appropriate method, and output

• code to call the method

At runtime the code of the method is called directly on the value
of a as the lookup has already been done by the compiler

So for a static lookup calling a method is just as fast to execute
as calling a function

Though this is not the whole story: more on this later



Types

Static lookup. The compiler will determine the type of a, find the
appropriate method, and output

• code to call the method

At runtime the code of the method is called directly on the value
of a as the lookup has already been done by the compiler

So for a static lookup calling a method is just as fast to execute
as calling a function

Though this is not the whole story: more on this later



Types

Static lookup. The compiler will determine the type of a, find the
appropriate method, and output

• code to call the method

At runtime the code of the method is called directly on the value
of a as the lookup has already been done by the compiler

So for a static lookup calling a method is just as fast to execute
as calling a function

Though this is not the whole story: more on this later



Types

Untyped. No OO possible!



Types

Thus we have a tradeoff for static vs. dynamic types. We get
either:

• slower compiler, more compile-time checking, faster
running code; against
• faster compiler, slower running code

Remember: for some people, a fast compile-run-debug cycle is
more important than fast (or correct) code!



Types

Thus we have a tradeoff for static vs. dynamic types. We get
either:

• slower compiler, more compile-time checking, faster
running code; against
• faster compiler, slower running code

Remember: for some people, a fast compile-run-debug cycle is
more important than fast (or correct) code!



Types

So, it seems, static is faster to execute and is therefore “better”

But the hidden point in dynamic is “the current value of a”

In many OO languages the type of the object held in variable a
can vary at runtime, so the appropriate method can vary at
runtime



Types

So, it seems, static is faster to execute and is therefore “better”

But the hidden point in dynamic is “the current value of a”

In many OO languages the type of the object held in variable a
can vary at runtime, so the appropriate method can vary at
runtime



Types

So, it seems, static is faster to execute and is therefore “better”

But the hidden point in dynamic is “the current value of a”

In many OO languages the type of the object held in variable a
can vary at runtime, so the appropriate method can vary at
runtime



Aside

Note that the phrase “the type of the object held in a variable
can vary” is ambiguous

By this we might mean something like x = 1 at one point and x
= "cat" at another

So the value contained in x changes, and they have different
types

Conversely, there are languages that allow you to change to
type of the value itself: the value stays the same, but its type is
allowed to change

Exercise Think about this in the context of type hierarchies,
e.g., casting an instance of Dog to an instance of Animal



Aside

Note that the phrase “the type of the object held in a variable
can vary” is ambiguous

By this we might mean something like x = 1 at one point and x
= "cat" at another

So the value contained in x changes, and they have different
types

Conversely, there are languages that allow you to change to
type of the value itself: the value stays the same, but its type is
allowed to change

Exercise Think about this in the context of type hierarchies,
e.g., casting an instance of Dog to an instance of Animal



Aside

Note that the phrase “the type of the object held in a variable
can vary” is ambiguous

By this we might mean something like x = 1 at one point and x
= "cat" at another

So the value contained in x changes, and they have different
types

Conversely, there are languages that allow you to change to
type of the value itself: the value stays the same, but its type is
allowed to change

Exercise Think about this in the context of type hierarchies,
e.g., casting an instance of Dog to an instance of Animal



Aside

Note that the phrase “the type of the object held in a variable
can vary” is ambiguous

By this we might mean something like x = 1 at one point and x
= "cat" at another

So the value contained in x changes, and they have different
types

Conversely, there are languages that allow you to change to
type of the value itself: the value stays the same, but its type is
allowed to change

Exercise Think about this in the context of type hierarchies,
e.g., casting an instance of Dog to an instance of Animal



Aside

Note that the phrase “the type of the object held in a variable
can vary” is ambiguous

By this we might mean something like x = 1 at one point and x
= "cat" at another

So the value contained in x changes, and they have different
types

Conversely, there are languages that allow you to change to
type of the value itself: the value stays the same, but its type is
allowed to change

Exercise Think about this in the context of type hierarchies,
e.g., casting an instance of Dog to an instance of Animal



Types

More commonly, we could have:

Animal a = new Animal(...)

...

a = new Dog(...)

when Dog is a subclass of Animal, we have a containing values
of different types



Types

In any case, the same line of code a.foo() might need a
different method each time you come to it as the type of the
value of a is potentially different each time

Even in static languages: see later



Types

In any case, the same line of code a.foo() might need a
different method each time you come to it as the type of the
value of a is potentially different each time

Even in static languages: see later



Types

Furthermore, some languages even allow you to create and
add new methods dynamically as the program is running, so
even if the type of the value of a is unchanged, the correct
method to call still might have changed!

This is the essence of the flexibility of dynamic languages

The cost is the execution speed

And the ability of the programmer to understand what is
happening



Types

Furthermore, some languages even allow you to create and
add new methods dynamically as the program is running, so
even if the type of the value of a is unchanged, the correct
method to call still might have changed!

This is the essence of the flexibility of dynamic languages

The cost is the execution speed

And the ability of the programmer to understand what is
happening



Types

Furthermore, some languages even allow you to create and
add new methods dynamically as the program is running, so
even if the type of the value of a is unchanged, the correct
method to call still might have changed!

This is the essence of the flexibility of dynamic languages

The cost is the execution speed

And the ability of the programmer to understand what is
happening



Types

Furthermore, some languages even allow you to create and
add new methods dynamically as the program is running, so
even if the type of the value of a is unchanged, the correct
method to call still might have changed!

This is the essence of the flexibility of dynamic languages

The cost is the execution speed

And the ability of the programmer to understand what is
happening



Types

for i in range(10):

if random.random() > 0.5:

x = "hello"

else:

x = 42

print(x + x)

Again, it is arguably bad style to do this without good reason



Types

Duck typing is a highly dynamic kind of typing: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo() the runtime examines the current value of
a to see if there is a foo method currently defined on it and
calls it if it find one

It’s not worried about the class of a (such a language might not
even have classes), only whether an appropriate method
named foo exists at that point in time

It is a runtime error if no method is found

The same line of code may or may not work depending on the
current value of a!

“If it walks like a duck and talks like a duck, then it is a duck”



Types

Duck typing is a highly dynamic kind of typing: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo() the runtime examines the current value of
a to see if there is a foo method currently defined on it and
calls it if it find one

It’s not worried about the class of a (such a language might not
even have classes), only whether an appropriate method
named foo exists at that point in time

It is a runtime error if no method is found

The same line of code may or may not work depending on the
current value of a!

“If it walks like a duck and talks like a duck, then it is a duck”



Types

Duck typing is a highly dynamic kind of typing: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo() the runtime examines the current value of
a to see if there is a foo method currently defined on it and
calls it if it find one

It’s not worried about the class of a (such a language might not
even have classes), only whether an appropriate method
named foo exists at that point in time

It is a runtime error if no method is found

The same line of code may or may not work depending on the
current value of a!

“If it walks like a duck and talks like a duck, then it is a duck”



Types

Duck typing is a highly dynamic kind of typing: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo() the runtime examines the current value of
a to see if there is a foo method currently defined on it and
calls it if it find one

It’s not worried about the class of a (such a language might not
even have classes), only whether an appropriate method
named foo exists at that point in time

It is a runtime error if no method is found

The same line of code may or may not work depending on the
current value of a!

“If it walks like a duck and talks like a duck, then it is a duck”



Types

Duck typing is a highly dynamic kind of typing: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo() the runtime examines the current value of
a to see if there is a foo method currently defined on it and
calls it if it find one

It’s not worried about the class of a (such a language might not
even have classes), only whether an appropriate method
named foo exists at that point in time

It is a runtime error if no method is found

The same line of code may or may not work depending on the
current value of a!

“If it walks like a duck and talks like a duck, then it is a duck”



Types

Duck typing is a highly dynamic kind of typing: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo() the runtime examines the current value of
a to see if there is a foo method currently defined on it and
calls it if it find one

It’s not worried about the class of a (such a language might not
even have classes), only whether an appropriate method
named foo exists at that point in time

It is a runtime error if no method is found

The same line of code may or may not work depending on the
current value of a!

“If it walks like a duck and talks like a duck, then it is a duck”



Types

Exercise Consider the Python

def two10(n):

for i in range(10):

n = 2*n

return n

two10(1)

two10(1.0)

two10("1")

two10(two10)



Types

Next: how types are expressed in languages

In some languages you don’t need to declare your variables,
e.g., Python

This is generally regarded as a bad feature as it leaves open
the easy bug of misspelling variables, e.g., complier and
compiler

Though some languages, e.g., Python, do do some runtime
checking to mitigate this



Types

Next: how types are expressed in languages

In some languages you don’t need to declare your variables,
e.g., Python

This is generally regarded as a bad feature as it leaves open
the easy bug of misspelling variables, e.g., complier and
compiler

Though some languages, e.g., Python, do do some runtime
checking to mitigate this



Types

Next: how types are expressed in languages

In some languages you don’t need to declare your variables,
e.g., Python

This is generally regarded as a bad feature as it leaves open
the easy bug of misspelling variables, e.g., complier and
compiler

Though some languages, e.g., Python, do do some runtime
checking to mitigate this



Types

Next: how types are expressed in languages

In some languages you don’t need to declare your variables,
e.g., Python

This is generally regarded as a bad feature as it leaves open
the easy bug of misspelling variables, e.g., complier and
compiler

Though some languages, e.g., Python, do do some runtime
checking to mitigate this



Types

While declaring variables, you may or may not need to declare
types

In dynamically typed languages you (generally) don’t declare
the type of variables, e.g., var x = 7; in JavaScript

It doesn’t really make sense to declare the type of a variable in
a dynamic language as it’s the value that has the type, not the
variable



Types

While declaring variables, you may or may not need to declare
types

In dynamically typed languages you (generally) don’t declare
the type of variables, e.g., var x = 7; in JavaScript

It doesn’t really make sense to declare the type of a variable in
a dynamic language as it’s the value that has the type, not the
variable



Types

While declaring variables, you may or may not need to declare
types

In dynamically typed languages you (generally) don’t declare
the type of variables, e.g., var x = 7; in JavaScript

It doesn’t really make sense to declare the type of a variable in
a dynamic language as it’s the value that has the type, not the
variable



Types

On the other hand in a statically typed language the type of the
variable is important

And they can have a few different ways to designate types of
variables in the source code



Types

On the other hand in a statically typed language the type of the
variable is important

And they can have a few different ways to designate types of
variables in the source code



Types

Manifest Typing: where the program code includes the types of
variables, e.g., C

int inc(int n)

{

return n+1;

}



Types

Implicit Typing: where the compiler infers any types it needs (as
much as it can), e.g., a Haskell function definition

inc x = x + 1

and Haskell determines the type of inc to be Num a => a -> a



Types

Or both, as in Rust:

fn fix(x: f64) -> i32 { ... }

...

let y = fix(z);

and Rust determines the type of y to be i32 and z to be f64



Types

Implicitly typed languages allow (or require, in ambiguous code)
the programmer to include type annotations if they want

let x: f64 = 42.0 explicit
let x = 42.0 inferred

And Go:

var i int = 23 explicit
i := 23 inferred

And Java:

int i = 23; explicit
var i = 23; inferred



Types

Implicitly typed languages allow (or require, in ambiguous code)
the programmer to include type annotations if they want

let x: f64 = 42.0 explicit
let x = 42.0 inferred

And Go:

var i int = 23 explicit
i := 23 inferred

And Java:

int i = 23; explicit
var i = 23; inferred



Types

Implicitly typed languages allow (or require, in ambiguous code)
the programmer to include type annotations if they want

let x: f64 = 42.0 explicit
let x = 42.0 inferred

And Go:

var i int = 23 explicit
i := 23 inferred

And Java:

int i = 23; explicit
var i = 23; inferred



Types

Implicitly typed languages allow (or require, in ambiguous code)
the programmer to include type annotations if they want

let x: f64 = 42.0 explicit
let x = 42.0 inferred

And Go:

var i int = 23 explicit
i := 23 inferred

And Java:

int i = 23; explicit
var i = 23; inferred



Types

As a middle path, some languages, in particular Rust, allow
most type annotations to be implicit while requiring others to be
manifest

Rust requires explicit type annotations on function declarations

This is a language design choice and the justification is that it
makes function APIs explicit and thus combining code from
several places much less error prone

fn triple(n: i32) -> i32 ...

When want triple you know exactly how to use it, quite the
opposite to duck typing



Types

As a middle path, some languages, in particular Rust, allow
most type annotations to be implicit while requiring others to be
manifest

Rust requires explicit type annotations on function declarations

This is a language design choice and the justification is that it
makes function APIs explicit and thus combining code from
several places much less error prone

fn triple(n: i32) -> i32 ...

When want triple you know exactly how to use it, quite the
opposite to duck typing



Types

As a middle path, some languages, in particular Rust, allow
most type annotations to be implicit while requiring others to be
manifest

Rust requires explicit type annotations on function declarations

This is a language design choice and the justification is that it
makes function APIs explicit and thus combining code from
several places much less error prone

fn triple(n: i32) -> i32 ...

When want triple you know exactly how to use it, quite the
opposite to duck typing



Types

As a middle path, some languages, in particular Rust, allow
most type annotations to be implicit while requiring others to be
manifest

Rust requires explicit type annotations on function declarations

This is a language design choice and the justification is that it
makes function APIs explicit and thus combining code from
several places much less error prone

fn triple(n: i32) -> i32 ...

When want triple you know exactly how to use it, quite the
opposite to duck typing



Types

As a middle path, some languages, in particular Rust, allow
most type annotations to be implicit while requiring others to be
manifest

Rust requires explicit type annotations on function declarations

This is a language design choice and the justification is that it
makes function APIs explicit and thus combining code from
several places much less error prone

fn triple(n: i32) -> i32 ...

When want triple you know exactly how to use it, quite the
opposite to duck typing



Types

Compare with

fn triple(n: i32) -> (i32,i32,i32) ...

Without the types the programmer is less sure on what is
happening!



Types

Compare with

fn triple(n: i32) -> (i32,i32,i32) ...

Without the types the programmer is less sure on what is
happening!



Types
Aside

Mathematically speaking, a function includes its domain and
codomain so sqr : [0..∞)→ [0..∞) is different to
sqr : (−∞..∞)→ [0..∞) is different to sqr : [0..∞)→ (−∞..∞)

In programming terms: uint -> uint vs int -> uint vs uint

-> int

And what about other sizes of int, or doubles or whatever?

This is important as documentation of the function, so helps
use: if this is compiled into a library and I want to use it, how
should I use it?



Types
Aside

Mathematically speaking, a function includes its domain and
codomain so sqr : [0..∞)→ [0..∞) is different to
sqr : (−∞..∞)→ [0..∞) is different to sqr : [0..∞)→ (−∞..∞)

In programming terms: uint -> uint vs int -> uint vs uint

-> int

And what about other sizes of int, or doubles or whatever?

This is important as documentation of the function, so helps
use: if this is compiled into a library and I want to use it, how
should I use it?



Types
Aside

Mathematically speaking, a function includes its domain and
codomain so sqr : [0..∞)→ [0..∞) is different to
sqr : (−∞..∞)→ [0..∞) is different to sqr : [0..∞)→ (−∞..∞)

In programming terms: uint -> uint vs int -> uint vs uint

-> int

And what about other sizes of int, or doubles or whatever?

This is important as documentation of the function, so helps
use: if this is compiled into a library and I want to use it, how
should I use it?



Types
Aside

Mathematically speaking, a function includes its domain and
codomain so sqr : [0..∞)→ [0..∞) is different to
sqr : (−∞..∞)→ [0..∞) is different to sqr : [0..∞)→ (−∞..∞)

In programming terms: uint -> uint vs int -> uint vs uint

-> int

And what about other sizes of int, or doubles or whatever?

This is important as documentation of the function, so helps
use: if this is compiled into a library and I want to use it, how
should I use it?



Types
Aside

Explicit: more work for the programmer; code is clear on types
and better documented

Implicit: less work for the programmer; code can be harder for
the programmer to understand

Or easier when the types get complicated

In
var stream = Files.newInputStream(path);
the programmer doesn’t have be bothered about what the type
of stream should be



Types
Aside

Explicit: more work for the programmer; code is clear on types
and better documented

Implicit: less work for the programmer; code can be harder for
the programmer to understand

Or easier when the types get complicated

In
var stream = Files.newInputStream(path);
the programmer doesn’t have be bothered about what the type
of stream should be



Types
Aside

Explicit: more work for the programmer; code is clear on types
and better documented

Implicit: less work for the programmer; code can be harder for
the programmer to understand

Or easier when the types get complicated

In
var stream = Files.newInputStream(path);
the programmer doesn’t have be bothered about what the type
of stream should be



Types
Aside

Explicit: more work for the programmer; code is clear on types
and better documented

Implicit: less work for the programmer; code can be harder for
the programmer to understand

Or easier when the types get complicated

In
var stream = Files.newInputStream(path);
the programmer doesn’t have be bothered about what the type
of stream should be



Types

Exercise And more mixed. For example, Rust allows mixed
explicit and implicit in single expressions, e.g.,

let vals: Vec< > = something

tells the compiler that something returns a vector of things, but
lets the compiler infer what type the things are. Read about why
this is done


