
Types

So:

• Manifest: allows for a simpler compiler as it doesn’t have to
work so hard. Requires the programmer to think explicitly
about the types
• Mixed: the programmer thinks about types, but a lot of the

hard work is done by the compiler. The code is moderately
explicit about types
• Implicit: allows for simpler code, but requires a much more

complex compiler to do the type inference. Possibly the
code is harder to understand by the programmer (less
“documentation” in code)

A trade-off of compiler speed against coding speed



Types

So:

• Manifest: allows for a simpler compiler as it doesn’t have to
work so hard. Requires the programmer to think explicitly
about the types

• Mixed: the programmer thinks about types, but a lot of the
hard work is done by the compiler. The code is moderately
explicit about types
• Implicit: allows for simpler code, but requires a much more

complex compiler to do the type inference. Possibly the
code is harder to understand by the programmer (less
“documentation” in code)

A trade-off of compiler speed against coding speed



Types

So:

• Manifest: allows for a simpler compiler as it doesn’t have to
work so hard. Requires the programmer to think explicitly
about the types
• Mixed: the programmer thinks about types, but a lot of the

hard work is done by the compiler. The code is moderately
explicit about types

• Implicit: allows for simpler code, but requires a much more
complex compiler to do the type inference. Possibly the
code is harder to understand by the programmer (less
“documentation” in code)

A trade-off of compiler speed against coding speed



Types

So:

• Manifest: allows for a simpler compiler as it doesn’t have to
work so hard. Requires the programmer to think explicitly
about the types
• Mixed: the programmer thinks about types, but a lot of the

hard work is done by the compiler. The code is moderately
explicit about types
• Implicit: allows for simpler code, but requires a much more

complex compiler to do the type inference. Possibly the
code is harder to understand by the programmer (less
“documentation” in code)

A trade-off of compiler speed against coding speed



Types

So:

• Manifest: allows for a simpler compiler as it doesn’t have to
work so hard. Requires the programmer to think explicitly
about the types
• Mixed: the programmer thinks about types, but a lot of the

hard work is done by the compiler. The code is moderately
explicit about types
• Implicit: allows for simpler code, but requires a much more

complex compiler to do the type inference. Possibly the
code is harder to understand by the programmer (less
“documentation” in code)

A trade-off of compiler speed against coding speed



Types

Python allows optional type declarations for variables:

def double(n: int):

return n+n

Though this is purely documentary and not checked by the
runtime: double(3.14) -> 6.28 and double(’ha’) ->
’haha’



Types

Python allows optional type declarations for variables:

def double(n: int):

return n+n

Though this is purely documentary and not checked by the
runtime: double(3.14) -> 6.28 and double(’ha’) ->
’haha’



Types

Such documentary type declarations (also called type hints)

• make the code easier to understand for the programmers
• makes the code easier to refactor
• helps IDEs (e.g., autocompletion)
• helps the programmer (not the compiler) catch bugs

Exercise There are several static type checkers for Python
(Mypy, Pytype, Pyright, Pyre, . . . ). Why do these exist?



Types

Such documentary type declarations (also called type hints)

• make the code easier to understand for the programmers
• makes the code easier to refactor
• helps IDEs (e.g., autocompletion)
• helps the programmer (not the compiler) catch bugs

Exercise There are several static type checkers for Python
(Mypy, Pytype, Pyright, Pyre, . . . ). Why do these exist?



Types

Exercise Read about Hindley-Milner type systems

Exercise Elements of type inference is being adopted by some
traditional explicitly typed languages. Why? Read about auto
in C++, var in C# and var in Java

Exercise Think about type inference in the presence of
automatic type coercions (weak typing)



Types

Static types are often further divided:

• Monomorphic/Lexical: variables have a single, definite
type, so you can type-check purely on the variables
int f(int x) { ... y = x; ... }

A very common approach



Types
Polymorphism

• Polymorphic: types can be shown by type variables, e.g.,
push: a * [a] -> [a]

or
template <class T>

List<T> push(T x, List<T> l)



Types
Polymorphism

Or

public static <T> List<T> push(T x, List<T> l)

or

func push[T](x T, l []T) []T

where a and T are variables that stand for types, not values

So push is a function that takes a value of some type, a list of
values of the same type and returns a list of values of that type



Types
Polymorphism

The idea of polymorphism seems to originate as far back as
1967 (Christopher Strachey)

Polymorphic (“many shaped”) functions are notionally functions
that work on many types

That is, you could give it an argument of type A or an argument
of type B and the function would (a) work and (b) do the “same
thing” to the argument regardless of the actual type of the
argument, e.g., push, above

The function push works the same on lists of integers and lists
of strings



Types
Polymorphism

The idea of polymorphism seems to originate as far back as
1967 (Christopher Strachey)

Polymorphic (“many shaped”) functions are notionally functions
that work on many types

That is, you could give it an argument of type A or an argument
of type B and the function would (a) work and (b) do the “same
thing” to the argument regardless of the actual type of the
argument, e.g., push, above

The function push works the same on lists of integers and lists
of strings



Types
Polymorphism

The idea of polymorphism seems to originate as far back as
1967 (Christopher Strachey)

Polymorphic (“many shaped”) functions are notionally functions
that work on many types

That is, you could give it an argument of type A or an argument
of type B and the function would (a) work and (b) do the “same
thing” to the argument regardless of the actual type of the
argument, e.g., push, above

The function push works the same on lists of integers and lists
of strings



Types
Polymorphism

The idea of polymorphism seems to originate as far back as
1967 (Christopher Strachey)

Polymorphic (“many shaped”) functions are notionally functions
that work on many types

That is, you could give it an argument of type A or an argument
of type B and the function would (a) work and (b) do the “same
thing” to the argument regardless of the actual type of the
argument, e.g., push, above

The function push works the same on lists of integers and lists
of strings



Types
Polymorphism

In other circumstances, if you defined a function to take a value
of one type and you gave it a value of another type, that would
be an error

After all, this is one of the reasons types are used: to catch the
cases where you use a value of the wrong type



Types
Polymorphism

In other circumstances, if you defined a function to take a value
of one type and you gave it a value of another type, that would
be an error

After all, this is one of the reasons types are used: to catch the
cases where you use a value of the wrong type



Types
Polymorphism

Polymorphism is where a function (or method) can be called on
more than one type, e.g., push doesn’t care what it’s a list of,
as all lists are built the same way

Polymorphism is really about presenting a single API to the
programmer and it works on more than one type

But the word “polymorphic” has expanded to mean something
more complicated



Types
Polymorphism

Polymorphism is where a function (or method) can be called on
more than one type, e.g., push doesn’t care what it’s a list of,
as all lists are built the same way

Polymorphism is really about presenting a single API to the
programmer and it works on more than one type

But the word “polymorphic” has expanded to mean something
more complicated



Types
Polymorphism

Polymorphism is where a function (or method) can be called on
more than one type, e.g., push doesn’t care what it’s a list of,
as all lists are built the same way

Polymorphism is really about presenting a single API to the
programmer and it works on more than one type

But the word “polymorphic” has expanded to mean something
more complicated



Types
Overloading

The concept of overloading has been around for a long time

Some languages (e.g., Java, C++, but not C) allow:

int f(int x) { return -x; }

double f(double x) { return 2.0*x; }

Multiple different functions with the same name

The compiler can distinguish which f we mean by the argument
types: f(2) means the int function; while f(2.0) means the
double function



Types
Overloading

The concept of overloading has been around for a long time

Some languages (e.g., Java, C++, but not C) allow:

int f(int x) { return -x; }

double f(double x) { return 2.0*x; }

Multiple different functions with the same name

The compiler can distinguish which f we mean by the argument
types: f(2) means the int function; while f(2.0) means the
double function



Types
Overloading

The concept of overloading has been around for a long time

Some languages (e.g., Java, C++, but not C) allow:

int f(int x) { return -x; }

double f(double x) { return 2.0*x; }

Multiple different functions with the same name

The compiler can distinguish which f we mean by the argument
types: f(2) means the int function; while f(2.0) means the
double function



Types
Overloading

The concept of overloading has been around for a long time

Some languages (e.g., Java, C++, but not C) allow:

int f(int x) { return -x; }

double f(double x) { return 2.0*x; }

Multiple different functions with the same name

The compiler can distinguish which f we mean by the argument
types: f(2) means the int function; while f(2.0) means the
double function



Types
Overloading

The concept of overloading has been around for a long time

Some languages (e.g., Java, C++, but not C) allow:

int f(int x) { return -x; }

double f(double x) { return 2.0*x; }

Multiple different functions with the same name

The compiler can distinguish which f we mean by the argument
types: f(2) means the int function; while f(2.0) means the
double function



Types
Overloading

And for f(x) the compiler looks at the declared type for x to
see which f to use

And different chunks of code are compiled for each function



Types
Overloading

And for f(x) the compiler looks at the declared type for x to
see which f to use

And different chunks of code are compiled for each function



Types
Overloading

Aside: another reason why we need to be careful to distinguish
between, say, 2 and 2.0

Exercise Think about the call f(3/2)



Types
Overloading

Aside: another reason why we need to be careful to distinguish
between, say, 2 and 2.0

Exercise Think about the call f(3/2)



Types
Overloading

The function bodies can be completely different: it’s almost
incidental that the functions have the same name

Though it would be sensible programming to have all instances
of f do the same kind of thing on their arguments

Overloading does not prevent you making the various fs do
wildly different things: but doing this would only make
understanding your code harder



Types
Overloading

The function bodies can be completely different: it’s almost
incidental that the functions have the same name

Though it would be sensible programming to have all instances
of f do the same kind of thing on their arguments

Overloading does not prevent you making the various fs do
wildly different things: but doing this would only make
understanding your code harder



Types
Overloading

The function bodies can be completely different: it’s almost
incidental that the functions have the same name

Though it would be sensible programming to have all instances
of f do the same kind of thing on their arguments

Overloading does not prevent you making the various fs do
wildly different things: but doing this would only make
understanding your code harder



Types
Overloading

So the type of the argument determines what happens:
f(2) is compiled as a call to the first
f(2.0) is compiled as a call to the second

In fact, in a typical implementation, the compiler internally
renames (“name mangling”) the two functions as (something
like) f int and f double, so giving them distinct names



Types
Overloading

So the type of the argument determines what happens:
f(2) is compiled as a call to the first
f(2.0) is compiled as a call to the second

In fact, in a typical implementation, the compiler internally
renames (“name mangling”) the two functions as (something
like) f int and f double, so giving them distinct names



Types
Overloading

It then (in effect) rewrites your code and replaces f everywhere
as appropriate

It writes “normal” functions

int f int(int x) { return -x; } and
double f double(double x) { return 2.0*x; },

and then

f(2) is replaced f int(2)
f(2.0) is replaced by f double(2.0)

It then compiles this “rewritten” code



Types
Overloading

It then (in effect) rewrites your code and replaces f everywhere
as appropriate

It writes “normal” functions

int f int(int x) { return -x; } and
double f double(double x) { return 2.0*x; },

and then

f(2) is replaced f int(2)
f(2.0) is replaced by f double(2.0)

It then compiles this “rewritten” code



Types
Overloading

It then (in effect) rewrites your code and replaces f everywhere
as appropriate

It writes “normal” functions

int f int(int x) { return -x; } and
double f double(double x) { return 2.0*x; },

and then

f(2) is replaced f int(2)
f(2.0) is replaced by f double(2.0)

It then compiles this “rewritten” code



Types
Overloading

Overloading is very widespread and appears in a limited way in
lots of languages: common functions like + are often
overloaded



Aside on Operators

Remember that operators like + and * are just convenient
syntax for the expected underlying functions or methods and
otherwise are not particularly special

You can write 1 + 2 rather than having to write add(1, 2) or
(add 1 2) or (1). add (2)

Many languages overload operators, so, for example, allowing
int+int and double+double values, sometimes strings, too



Aside on Operators

Remember that operators like + and * are just convenient
syntax for the expected underlying functions or methods and
otherwise are not particularly special

You can write 1 + 2 rather than having to write add(1, 2) or
(add 1 2) or (1). add (2)

Many languages overload operators, so, for example, allowing
int+int and double+double values, sometimes strings, too



Aside on Operators

Remember that operators like + and * are just convenient
syntax for the expected underlying functions or methods and
otherwise are not particularly special

You can write 1 + 2 rather than having to write add(1, 2) or
(add 1 2) or (1). add (2)

Many languages overload operators, so, for example, allowing
int+int and double+double values, sometimes strings, too



Aside on Operators

Some languages allow mixed types, too: int+double and
double+int, as in 1 + 2.3

These can all refer to different underlying functions. E.g.,
int+double would likely coerce its first argument to a double
before doing a double+double add. This is different from what
double+int needs to do



Aside on Operators

Some languages allow mixed types, too: int+double and
double+int, as in 1 + 2.3

These can all refer to different underlying functions. E.g.,
int+double would likely coerce its first argument to a double
before doing a double+double add. This is different from what
double+int needs to do



Aside on Operators

OCaml doesn’t overload +, but uses + for integer addition and
+. for float addition

BCPL, being untyped, didn’t support float arithmetic for a long
time (as the hardware of the time didn’t either!), but later added
it with non-overloaded operators like #+ and #*

A strongly typed language might overload int+int and
double+double but not int+double or double+int,
disallowing implicit coercion

Exercise Some languages (e.g., C++, Rust, Python) allow you
to define your own methods on operators, while others don’t
(e.g., Java). Investigate



Aside on Operators

OCaml doesn’t overload +, but uses + for integer addition and
+. for float addition

BCPL, being untyped, didn’t support float arithmetic for a long
time (as the hardware of the time didn’t either!), but later added
it with non-overloaded operators like #+ and #*

A strongly typed language might overload int+int and
double+double but not int+double or double+int,
disallowing implicit coercion

Exercise Some languages (e.g., C++, Rust, Python) allow you
to define your own methods on operators, while others don’t
(e.g., Java). Investigate



Aside on Operators

OCaml doesn’t overload +, but uses + for integer addition and
+. for float addition

BCPL, being untyped, didn’t support float arithmetic for a long
time (as the hardware of the time didn’t either!), but later added
it with non-overloaded operators like #+ and #*

A strongly typed language might overload int+int and
double+double but not int+double or double+int,
disallowing implicit coercion

Exercise Some languages (e.g., C++, Rust, Python) allow you
to define your own methods on operators, while others don’t
(e.g., Java). Investigate



Aside on Operators

OCaml doesn’t overload +, but uses + for integer addition and
+. for float addition

BCPL, being untyped, didn’t support float arithmetic for a long
time (as the hardware of the time didn’t either!), but later added
it with non-overloaded operators like #+ and #*

A strongly typed language might overload int+int and
double+double but not int+double or double+int,
disallowing implicit coercion

Exercise Some languages (e.g., C++, Rust, Python) allow you
to define your own methods on operators, while others don’t
(e.g., Java). Investigate



Types
Overloading/Polymorphism

So overloading is a way of having different chunks of code use
the same function name

The polymorphism we saw earlier is different from overloading

E.g., length to return the length of a list

Here, the same function code works on many types of list

There is just one chunk of code that works on multiple types

length [2] (list of integers) runs the same code as
length ["hello" "world"] (list of strings)

length doesn’t care about the types of its arguments



Types
Overloading/Polymorphism

So overloading is a way of having different chunks of code use
the same function name

The polymorphism we saw earlier is different from overloading

E.g., length to return the length of a list

Here, the same function code works on many types of list

There is just one chunk of code that works on multiple types

length [2] (list of integers) runs the same code as
length ["hello" "world"] (list of strings)

length doesn’t care about the types of its arguments



Types
Overloading/Polymorphism

So overloading is a way of having different chunks of code use
the same function name

The polymorphism we saw earlier is different from overloading

E.g., length to return the length of a list

Here, the same function code works on many types of list

There is just one chunk of code that works on multiple types

length [2] (list of integers) runs the same code as
length ["hello" "world"] (list of strings)

length doesn’t care about the types of its arguments



Types
Overloading/Polymorphism

So overloading is a way of having different chunks of code use
the same function name

The polymorphism we saw earlier is different from overloading

E.g., length to return the length of a list

Here, the same function code works on many types of list

There is just one chunk of code that works on multiple types

length [2] (list of integers) runs the same code as
length ["hello" "world"] (list of strings)

length doesn’t care about the types of its arguments



Types
Overloading/Polymorphism

So overloading is a way of having different chunks of code use
the same function name

The polymorphism we saw earlier is different from overloading

E.g., length to return the length of a list

Here, the same function code works on many types of list

There is just one chunk of code that works on multiple types

length [2] (list of integers) runs the same code as
length ["hello" "world"] (list of strings)

length doesn’t care about the types of its arguments



Types
Overloading/Polymorphism

So overloading is a way of having different chunks of code use
the same function name

The polymorphism we saw earlier is different from overloading

E.g., length to return the length of a list

Here, the same function code works on many types of list

There is just one chunk of code that works on multiple types

length [2] (list of integers) runs the same code as
length ["hello" "world"] (list of strings)

length doesn’t care about the types of its arguments



Types
Overloading/Polymorphism

So overloading is a way of having different chunks of code use
the same function name

The polymorphism we saw earlier is different from overloading

E.g., length to return the length of a list

Here, the same function code works on many types of list

There is just one chunk of code that works on multiple types

length [2] (list of integers) runs the same code as
length ["hello" "world"] (list of strings)

length doesn’t care about the types of its arguments



Types
Overloading/Polymorphism

Beware of overloading disguised as polymorphism:

template <class T> // T is a type variable

T f(T x) { return -x; }

in C++ defining a function f taking a value of type T and
returning a value of type T, for all types T. Similarly:

// T any type that implements negation

fn f<T>(x: T) -> T where T: Neg<Output=T> { -x }

in Rust.

Both allow us to call f(2) and f(2.0) etc.



Types
Overloading/Polymorphism

The programmer writes code just once, defining a function that
will work on many types T. Superficially this looks like
polymorphism: we can call f(2) and f(2.0) and the “same”
code gets executed

But not really. The compiler simply writes for itself the code for
the individual int and double versions and compiles those (or
does the equivalent)

int f(int x) { return -x; }

double f(double x) { return -x; }



Types
Overloading/Polymorphism

The programmer writes code just once, defining a function that
will work on many types T. Superficially this looks like
polymorphism: we can call f(2) and f(2.0) and the “same”
code gets executed

But not really. The compiler simply writes for itself the code for
the individual int and double versions and compiles those (or
does the equivalent)

int f(int x) { return -x; }

double f(double x) { return -x; }



Types
Overloading/Polymorphism

The programmer writes code just once, defining a function that
will work on many types T. Superficially this looks like
polymorphism: we can call f(2) and f(2.0) and the “same”
code gets executed

But not really. The compiler simply writes for itself the code for
the individual int and double versions and compiles those (or
does the equivalent)

int f(int x) { return -x; }

double f(double x) { return -x; }



Types
Overloading/Polymorphism

This approach is called monomorphization: replacing
something apparently polymorphic with multiple monomorphic
bits of code

And this is actually overloading f as the underlying code to
negate an integer is different from the code to negate a floating
point value

And it would do the usual internal renaming

int f_int(int x) { return -x; }

double f_double(double x) { return -x; }

Exercise Make sure you understand why negation of integers
is different code to negation of floating point



Types
Overloading/Polymorphism

This approach is called monomorphization: replacing
something apparently polymorphic with multiple monomorphic
bits of code

And this is actually overloading f as the underlying code to
negate an integer is different from the code to negate a floating
point value

And it would do the usual internal renaming

int f_int(int x) { return -x; }

double f_double(double x) { return -x; }

Exercise Make sure you understand why negation of integers
is different code to negation of floating point



Types
Overloading/Polymorphism

This approach is called monomorphization: replacing
something apparently polymorphic with multiple monomorphic
bits of code

And this is actually overloading f as the underlying code to
negate an integer is different from the code to negate a floating
point value

And it would do the usual internal renaming

int f_int(int x) { return -x; }

double f_double(double x) { return -x; }

Exercise Make sure you understand why negation of integers
is different code to negation of floating point



Types
Overloading/Polymorphism

This approach is called monomorphization: replacing
something apparently polymorphic with multiple monomorphic
bits of code

And this is actually overloading f as the underlying code to
negate an integer is different from the code to negate a floating
point value

And it would do the usual internal renaming

int f_int(int x) { return -x; }

double f_double(double x) { return -x; }

Exercise Make sure you understand why negation of integers
is different code to negation of floating point



Types
Overloading/Polymorphism

Be aware that some people classify overloading as a particular
kind of polymorphism, even though overloading uses different
pieces of code for each type

For them, the fact that two functions have the same name is
enough to call it polymorphism

Perhaps they are thinking of overloading the name, rather than
overloading the function?

They call it ad hoc polymorphism, in contrast with true
polymorphism, parametric polymorphism

overloading ↔ ad hoc polymorphism
polymorphism ↔ parametric polymorphism



Types
Overloading/Polymorphism

Be aware that some people classify overloading as a particular
kind of polymorphism, even though overloading uses different
pieces of code for each type

For them, the fact that two functions have the same name is
enough to call it polymorphism

Perhaps they are thinking of overloading the name, rather than
overloading the function?

They call it ad hoc polymorphism, in contrast with true
polymorphism, parametric polymorphism

overloading ↔ ad hoc polymorphism
polymorphism ↔ parametric polymorphism



Types
Overloading/Polymorphism

Be aware that some people classify overloading as a particular
kind of polymorphism, even though overloading uses different
pieces of code for each type

For them, the fact that two functions have the same name is
enough to call it polymorphism

Perhaps they are thinking of overloading the name, rather than
overloading the function?

They call it ad hoc polymorphism, in contrast with true
polymorphism, parametric polymorphism

overloading ↔ ad hoc polymorphism
polymorphism ↔ parametric polymorphism



Types
Overloading/Polymorphism

Be aware that some people classify overloading as a particular
kind of polymorphism, even though overloading uses different
pieces of code for each type

For them, the fact that two functions have the same name is
enough to call it polymorphism

Perhaps they are thinking of overloading the name, rather than
overloading the function?

They call it ad hoc polymorphism, in contrast with true
polymorphism, parametric polymorphism

overloading ↔ ad hoc polymorphism
polymorphism ↔ parametric polymorphism



Types
Overloading Return Types

Many languages only support overloading on function argument
types, while conceivably you could overload on return types:

int f(int n) { ... }

double f(int n) { ... }

where we distinguish using the return type

This is much rarer



Types
Overloading Return Types

Many languages only support overloading on function argument
types, while conceivably you could overload on return types:

int f(int n) { ... }

double f(int n) { ... }

where we distinguish using the return type

This is much rarer



Types
Overloading Return Types

For example

int f(int n) { ... }

double f(int n) { ... }

int g(int n) { ... }

int g(double n) { ... }

where we overload g in the normal way

What should we do with g(f(1))?

Overloading both argument types and return types is tricky: so
we pick just one, and overloading arguments is generally more
useful



Types
Overloading Return Types

For example

int f(int n) { ... }

double f(int n) { ... }

int g(int n) { ... }

int g(double n) { ... }

where we overload g in the normal way

What should we do with g(f(1))?

Overloading both argument types and return types is tricky: so
we pick just one, and overloading arguments is generally more
useful



Types
Overloading Return Types

For example

int f(int n) { ... }

double f(int n) { ... }

int g(int n) { ... }

int g(double n) { ... }

where we overload g in the normal way

What should we do with g(f(1))?

Overloading both argument types and return types is tricky: so
we pick just one, and overloading arguments is generally more
useful



Types
Overloading Return Types

Java and C++ don’t support overloading on return types: so
you can’t have both int foo(int) and double foo(int)

You can have both int foo(int) and double foo(double)
by virtue of the different argument types

Exercise Language with more sophisticated type systems,
such as Rust and Haskell, do allow a form of overloading on
return types. Read about this



Types
Overloading Return Types

Java and C++ don’t support overloading on return types: so
you can’t have both int foo(int) and double foo(int)

You can have both int foo(int) and double foo(double)
by virtue of the different argument types

Exercise Language with more sophisticated type systems,
such as Rust and Haskell, do allow a form of overloading on
return types. Read about this



Types
Overloading Return Types

Java and C++ don’t support overloading on return types: so
you can’t have both int foo(int) and double foo(int)

You can have both int foo(int) and double foo(double)
by virtue of the different argument types

Exercise Language with more sophisticated type systems,
such as Rust and Haskell, do allow a form of overloading on
return types. Read about this



Types
Overloading/Polymorphism

Monomorphization is not the only way a language might choose
to implement polymorphism

Exercise See generics in Java: this uses Type Erasure (which
is actually parametric polymorphism)

Exercise See generics in Go: this uses a partial
monomorphization technique called GCShape stenciling with
Dictionaries



Types
Overloading/Polymorphism

Monomorphization is not the only way a language might choose
to implement polymorphism

Exercise See generics in Java: this uses Type Erasure (which
is actually parametric polymorphism)

Exercise See generics in Go: this uses a partial
monomorphization technique called GCShape stenciling with
Dictionaries



Types
Overloading/Polymorphism

Exercise Swift is superficially similar to other languages, e.g.,

func min<T: Comparable>(x: T, y: T) -> T {

return y < x ? y : x

}

but again, it does something different. Read about Generic
Specialization (which is kind of dynamic)

Exercise And read about C#’s approach to monomorphization:
Lazy Monomorphisation



Types

Advanced Exercise Compare these monomorphization
techniques

Exercise Find out what overloading your favourite languages
support, e.g., overloading based on numbers of arguments to a
function: int f(int a) and int f(int a, int b)



Types
Subtype Polymorphism

Next we have subtype polymorphism which is the kind of
polymorphism that arises when we define a function on a type
and apply it to an instance of a subtype

Almost always seen in the context of classes, rather than just
general types

Some languages do support subtypes, as opposed to
subclasses, e.g., positive integers as a subtype of all integers,
but this is not common



Types
Subtype Polymorphism

Next we have subtype polymorphism which is the kind of
polymorphism that arises when we define a function on a type
and apply it to an instance of a subtype

Almost always seen in the context of classes, rather than just
general types

Some languages do support subtypes, as opposed to
subclasses, e.g., positive integers as a subtype of all integers,
but this is not common



Types
Subtype Polymorphism

Next we have subtype polymorphism which is the kind of
polymorphism that arises when we define a function on a type
and apply it to an instance of a subtype

Almost always seen in the context of classes, rather than just
general types

Some languages do support subtypes, as opposed to
subclasses, e.g., positive integers as a subtype of all integers,
but this is not common



Types
Subtype Polymorphism

For example if you have a class Animal with a subclass Cat

A method defined on Animal will work on an instance of Cat
even though they are not the same types

To emphasise this point: Cat and Animal are different classes,
as you can’t use them interchangeably

So this looks like a kind of polymorphism: a method working on
multiple types

But subtype polymorphism — something every OO
programmer relies on every day — is not actually different from
the kinds of polymorphism we have seen already



Types
Subtype Polymorphism

For example if you have a class Animal with a subclass Cat

A method defined on Animal will work on an instance of Cat
even though they are not the same types

To emphasise this point: Cat and Animal are different classes,
as you can’t use them interchangeably

So this looks like a kind of polymorphism: a method working on
multiple types

But subtype polymorphism — something every OO
programmer relies on every day — is not actually different from
the kinds of polymorphism we have seen already



Types
Subtype Polymorphism

For example if you have a class Animal with a subclass Cat

A method defined on Animal will work on an instance of Cat
even though they are not the same types

To emphasise this point: Cat and Animal are different classes,
as you can’t use them interchangeably

So this looks like a kind of polymorphism: a method working on
multiple types

But subtype polymorphism — something every OO
programmer relies on every day — is not actually different from
the kinds of polymorphism we have seen already



Types
Subtype Polymorphism

For example if you have a class Animal with a subclass Cat

A method defined on Animal will work on an instance of Cat
even though they are not the same types

To emphasise this point: Cat and Animal are different classes,
as you can’t use them interchangeably

So this looks like a kind of polymorphism: a method working on
multiple types

But subtype polymorphism — something every OO
programmer relies on every day — is not actually different from
the kinds of polymorphism we have seen already



Types
Subtype Polymorphism

For example if you have a class Animal with a subclass Cat

A method defined on Animal will work on an instance of Cat
even though they are not the same types

To emphasise this point: Cat and Animal are different classes,
as you can’t use them interchangeably

So this looks like a kind of polymorphism: a method working on
multiple types

But subtype polymorphism — something every OO
programmer relies on every day — is not actually different from
the kinds of polymorphism we have seen already



Types
Subtype Polymorphism

Suppose we have classes

class Animal {

bool alive() { ... }

bool sleepy() { return false; }

}

class Cat extends Animal {

bool sleepy() { return true; }

}

where Cat inherits the alive method but overrides the sleepy
method



Types
Subtype Polymorphism

The alive method is parametric polymorphic: the same
method works on more than one type, namely Animal and Cat

The sleepy method is ad-hoc polymorphic (overloaded) as we
have two different bits of code with the same name, sleepy

Thus “subtype polymorphic” is actually just a shorthand for
“either ad-hoc or parametric polymorphic”



Types
Subtype Polymorphism

The alive method is parametric polymorphic: the same
method works on more than one type, namely Animal and Cat

The sleepy method is ad-hoc polymorphic (overloaded) as we
have two different bits of code with the same name, sleepy

Thus “subtype polymorphic” is actually just a shorthand for
“either ad-hoc or parametric polymorphic”



Types
Subtype Polymorphism

The alive method is parametric polymorphic: the same
method works on more than one type, namely Animal and Cat

The sleepy method is ad-hoc polymorphic (overloaded) as we
have two different bits of code with the same name, sleepy

Thus “subtype polymorphic” is actually just a shorthand for
“either ad-hoc or parametric polymorphic”



Types
Subtype Polymorphism

While talking about subtype polymorphism we should mention
the Liskov substitution principle

A principle that outlines the behaviour we should expect from
subtyping

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

If this holds, instances of S really are instances of T, but
perhaps with a few additional properties

Methods for Animal should work on Cats



Types
Subtype Polymorphism

While talking about subtype polymorphism we should mention
the Liskov substitution principle

A principle that outlines the behaviour we should expect from
subtyping

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

If this holds, instances of S really are instances of T, but
perhaps with a few additional properties

Methods for Animal should work on Cats



Types
Subtype Polymorphism

While talking about subtype polymorphism we should mention
the Liskov substitution principle

A principle that outlines the behaviour we should expect from
subtyping

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

If this holds, instances of S really are instances of T, but
perhaps with a few additional properties

Methods for Animal should work on Cats



Types
Subtype Polymorphism

While talking about subtype polymorphism we should mention
the Liskov substitution principle

A principle that outlines the behaviour we should expect from
subtyping

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

If this holds, instances of S really are instances of T, but
perhaps with a few additional properties

Methods for Animal should work on Cats



Types
Subtype Polymorphism

While talking about subtype polymorphism we should mention
the Liskov substitution principle

A principle that outlines the behaviour we should expect from
subtyping

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

If this holds, instances of S really are instances of T, but
perhaps with a few additional properties

Methods for Animal should work on Cats



Types
Subtype Polymorphism

This is most people’s belief on how subtypes work: so why is it
worth mentioning?

Because some versions of inheritance and some uses of
inheritance violate this principle

Some examples later, when we talk about class composition



Types
Subtype Polymorphism

This is most people’s belief on how subtypes work: so why is it
worth mentioning?

Because some versions of inheritance and some uses of
inheritance violate this principle

Some examples later, when we talk about class composition



Types
Subtype Polymorphism

This is most people’s belief on how subtypes work: so why is it
worth mentioning?

Because some versions of inheritance and some uses of
inheritance violate this principle

Some examples later, when we talk about class composition



Types

Note that the ideas of polymorphism and overloading are not
reliant on OO: in fact they both predate OO

As previously mentioned, a large number of languages
overload the arithmetic functions like + and *, though most only
in a fixed way

Lisp has always had parametric polymorphism (length of a
list, etc.)



Types

Note that the ideas of polymorphism and overloading are not
reliant on OO: in fact they both predate OO

As previously mentioned, a large number of languages
overload the arithmetic functions like + and *, though most only
in a fixed way

Lisp has always had parametric polymorphism (length of a
list, etc.)



Types

Note that the ideas of polymorphism and overloading are not
reliant on OO: in fact they both predate OO

As previously mentioned, a large number of languages
overload the arithmetic functions like + and *, though most only
in a fixed way

Lisp has always had parametric polymorphism (length of a
list, etc.)



Types

Hacker Exercise C “supports” polymorphism using void *.
Read about this

Exercise Ada supports subtyping, e.g., integer ranges, such as
“integers 0. . . 10” as a subtype of all integers. Read about this

Exercise We can also have polymorphic datatypes, e.g., list
in Lisp, struct Pair<T>(T, T) in Rust, Java, and so on.
Read about these, and determine whether they are parametric
or ad-hoc


