
Variables

Some languages, e.g., Rust and F# take the opposite point of
view: variables are constant by default and require the
programmer to indicate mutability

In Rust:

let x = 7;

x = x + 1;

will not compile

let mut x = 7;

x = x + 1;

to declare a mutable variable



Variables

Some languages, e.g., Rust and F# take the opposite point of
view: variables are constant by default and require the
programmer to indicate mutability

In Rust:

let x = 7;

x = x + 1;

will not compile

let mut x = 7;

x = x + 1;

to declare a mutable variable



Variables

Some languages, e.g., Rust and F# take the opposite point of
view: variables are constant by default and require the
programmer to indicate mutability

In Rust:

let x = 7;

x = x + 1;

will not compile

let mut x = 7;

x = x + 1;

to declare a mutable variable



Variables

Some languages, e.g., Rust and F# take the opposite point of
view: variables are constant by default and require the
programmer to indicate mutability

In Rust:

let x = 7;

x = x + 1;

will not compile

let mut x = 7;

x = x + 1;

to declare a mutable variable



Variables

Roughly speaking, Rust treats T and mut T as different types,
allowing lots of interesting type-based things

Including type checking on mutability

fn inc(n: &mut i32) -> ... will fail to compile a call on
an argument that is not mutable

Using the type system to prevent “accidental” mistakes by the
programmer



Variables

Roughly speaking, Rust treats T and mut T as different types,
allowing lots of interesting type-based things

Including type checking on mutability

fn inc(n: &mut i32) -> ... will fail to compile a call on
an argument that is not mutable

Using the type system to prevent “accidental” mistakes by the
programmer



Variables

Roughly speaking, Rust treats T and mut T as different types,
allowing lots of interesting type-based things

Including type checking on mutability

fn inc(n: &mut i32) -> ... will fail to compile a call on
an argument that is not mutable

Using the type system to prevent “accidental” mistakes by the
programmer



Variables

Roughly speaking, Rust treats T and mut T as different types,
allowing lots of interesting type-based things

Including type checking on mutability

fn inc(n: &mut i32) -> ... will fail to compile a call on
an argument that is not mutable

Using the type system to prevent “accidental” mistakes by the
programmer



Variables

Other languages, functional languages in particular, say that all
variables are constant, no exception

So in Haskell, say, x = 1 sets the value of x to be 1 and that
cannot now change

Writing x = x + 1 is always an error

Thus making Haskell code more like mathematics

The “=” should be thought of as a declaration of identity, not as
an assignment



Variables

Other languages, functional languages in particular, say that all
variables are constant, no exception

So in Haskell, say, x = 1 sets the value of x to be 1 and that
cannot now change

Writing x = x + 1 is always an error

Thus making Haskell code more like mathematics

The “=” should be thought of as a declaration of identity, not as
an assignment



Variables

Other languages, functional languages in particular, say that all
variables are constant, no exception

So in Haskell, say, x = 1 sets the value of x to be 1 and that
cannot now change

Writing x = x + 1 is always an error

Thus making Haskell code more like mathematics

The “=” should be thought of as a declaration of identity, not as
an assignment



Variables

Other languages, functional languages in particular, say that all
variables are constant, no exception

So in Haskell, say, x = 1 sets the value of x to be 1 and that
cannot now change

Writing x = x + 1 is always an error

Thus making Haskell code more like mathematics

The “=” should be thought of as a declaration of identity, not as
an assignment



Variables

Other languages, functional languages in particular, say that all
variables are constant, no exception

So in Haskell, say, x = 1 sets the value of x to be 1 and that
cannot now change

Writing x = x + 1 is always an error

Thus making Haskell code more like mathematics

The “=” should be thought of as a declaration of identity, not as
an assignment



Variables

So x = x + 1 is like telling Haskell that x is a value that equals
itself plus 1

Exercise The ghci Haskell interpreter behaves differently from
the compiler when given this. Why?



Variables

So x = x + 1 is like telling Haskell that x is a value that equals
itself plus 1

Exercise The ghci Haskell interpreter behaves differently from
the compiler when given this. Why?



Variables

The consequences of this immutability choice are many, for
example you can’t have for loops in the same way as C or
Java does, as a loop variable must vary

Instead you use more powerful constructs like recursion or
iterators or maps

If you come from a language with mutable variables this seems
a problem, but a flexible programmer will realise this can be a
good thing and you can write better code because of it



Variables

The consequences of this immutability choice are many, for
example you can’t have for loops in the same way as C or
Java does, as a loop variable must vary

Instead you use more powerful constructs like recursion or
iterators or maps

If you come from a language with mutable variables this seems
a problem, but a flexible programmer will realise this can be a
good thing and you can write better code because of it



Variables

The consequences of this immutability choice are many, for
example you can’t have for loops in the same way as C or
Java does, as a loop variable must vary

Instead you use more powerful constructs like recursion or
iterators or maps

If you come from a language with mutable variables this seems
a problem, but a flexible programmer will realise this can be a
good thing and you can write better code because of it



Variables

In practice, for loops are actually quite limited as an idea: try
traversing a tree with a for loop — it’s trivial with recursion

And then you can take such ideas back to non-functional
languages such as Python and C++



Variables

In practice, for loops are actually quite limited as an idea: try
traversing a tree with a for loop — it’s trivial with recursion

And then you can take such ideas back to non-functional
languages such as Python and C++



Iterators

For example, iterators, an idea pioneered in functional
languages that is now appearing in many other languages

Consider this loop that adds 1 to each element of a vector

for (i = 0; i < 10; i++) {

v[i] = v[i] + 1;

}

What happens when you run the code and the vector is only of
length 4?



Iterators

For example, iterators, an idea pioneered in functional
languages that is now appearing in many other languages

Consider this loop that adds 1 to each element of a vector

for (i = 0; i < 10; i++) {

v[i] = v[i] + 1;

}

What happens when you run the code and the vector is only of
length 4?



Iterators

For example, iterators, an idea pioneered in functional
languages that is now appearing in many other languages

Consider this loop that adds 1 to each element of a vector

for (i = 0; i < 10; i++) {

v[i] = v[i] + 1;

}

What happens when you run the code and the vector is only of
length 4?



Iterators

For example, iterators, an idea pioneered in functional
languages that is now appearing in many other languages

Consider this loop that adds 1 to each element of a vector

for (i = 0; i < 10; i++) {

v[i] = v[i] + 1;

}

What happens when you run the code and the vector is only of
length 4?



Iterators

A “safe” language such as Java, will take time to check the
indices i in v[i] as it runs to make sure they are within the
range of the size of the vector v

This avoids the code trying to access beyond the end of the
vector

It will produce some kind of error message when run



Iterators

A “safe” language such as Java, will take time to check the
indices i in v[i] as it runs to make sure they are within the
range of the size of the vector v

This avoids the code trying to access beyond the end of the
vector

It will produce some kind of error message when run



Iterators

A “safe” language such as Java, will take time to check the
indices i in v[i] as it runs to make sure they are within the
range of the size of the vector v

This avoids the code trying to access beyond the end of the
vector

It will produce some kind of error message when run



Iterators

An “unsafe” language, like C, doesn’t check and your code will
happily access whatever happens to be in memory after the
vector

Your code may work and give the correct results, it may crash,
or — much worse — it may seem to work and silently give
incorrect results

This is one of the common sources of memory bugs in
production software (recall the statement from Microsoft)



Iterators

An “unsafe” language, like C, doesn’t check and your code will
happily access whatever happens to be in memory after the
vector

Your code may work and give the correct results, it may crash,
or — much worse — it may seem to work and silently give
incorrect results

This is one of the common sources of memory bugs in
production software (recall the statement from Microsoft)



Iterators

An “unsafe” language, like C, doesn’t check and your code will
happily access whatever happens to be in memory after the
vector

Your code may work and give the correct results, it may crash,
or — much worse — it may seem to work and silently give
incorrect results

This is one of the common sources of memory bugs in
production software (recall the statement from Microsoft)



Iterators

The trade-off here is that runtime checks like this are
expensive, meaning they slow down the code a lot

C: no checks, fast code, easy bugs

Java: checks, slower code, catching more bugs



Iterators

The trade-off here is that runtime checks like this are
expensive, meaning they slow down the code a lot

C: no checks, fast code, easy bugs

Java: checks, slower code, catching more bugs



Iterators

The trade-off here is that runtime checks like this are
expensive, meaning they slow down the code a lot

C: no checks, fast code, easy bugs

Java: checks, slower code, catching more bugs



Iterators

Sometimes — just sometimes — the compiler can analyse
such code and deduce when it is safe and then it can compile
the code with no checking

The checking has been done by the compiler, so doesn’t need
to be done at runtime

Unfortunately, for a lot of code this is not even theoretically
possible to deduce



Iterators

Sometimes — just sometimes — the compiler can analyse
such code and deduce when it is safe and then it can compile
the code with no checking

The checking has been done by the compiler, so doesn’t need
to be done at runtime

Unfortunately, for a lot of code this is not even theoretically
possible to deduce



Iterators

Sometimes — just sometimes — the compiler can analyse
such code and deduce when it is safe and then it can compile
the code with no checking

The checking has been done by the compiler, so doesn’t need
to be done at runtime

Unfortunately, for a lot of code this is not even theoretically
possible to deduce



Iterators

Another very common coding error:

for (i = 0; i < len(a); i++) {

print(a[i] + a[i+1]);

}

which is much less “visible” to the programmer, and to the
compiler



Iterators

So we are led to think about iterators (actual syntax varies
according to the language):

for val in v do { val = val + 1; }

Here val takes successive references to the elements in v,
namely v[0], then v[1] (and then adds 1 to each)

And note that (a) it never goes off the end of the vector, (b) it
doesn’t need runtime checks

The iterator goes though exactly and only the elements in the
vector, so there is nothing that needs checking

Exercise For C geeks. Why can’t C support iterators like this?



Iterators

So we are led to think about iterators (actual syntax varies
according to the language):

for val in v do { val = val + 1; }

Here val takes successive references to the elements in v,
namely v[0], then v[1] (and then adds 1 to each)

And note that (a) it never goes off the end of the vector, (b) it
doesn’t need runtime checks

The iterator goes though exactly and only the elements in the
vector, so there is nothing that needs checking

Exercise For C geeks. Why can’t C support iterators like this?



Iterators

So we are led to think about iterators (actual syntax varies
according to the language):

for val in v do { val = val + 1; }

Here val takes successive references to the elements in v,
namely v[0], then v[1] (and then adds 1 to each)

And note that (a) it never goes off the end of the vector, (b) it
doesn’t need runtime checks

The iterator goes though exactly and only the elements in the
vector, so there is nothing that needs checking

Exercise For C geeks. Why can’t C support iterators like this?



Iterators

So we are led to think about iterators (actual syntax varies
according to the language):

for val in v do { val = val + 1; }

Here val takes successive references to the elements in v,
namely v[0], then v[1] (and then adds 1 to each)

And note that (a) it never goes off the end of the vector, (b) it
doesn’t need runtime checks

The iterator goes though exactly and only the elements in the
vector, so there is nothing that needs checking

Exercise For C geeks. Why can’t C support iterators like this?



Iterators

So we are led to think about iterators (actual syntax varies
according to the language):

for val in v do { val = val + 1; }

Here val takes successive references to the elements in v,
namely v[0], then v[1] (and then adds 1 to each)

And note that (a) it never goes off the end of the vector, (b) it
doesn’t need runtime checks

The iterator goes though exactly and only the elements in the
vector, so there is nothing that needs checking

Exercise For C geeks. Why can’t C support iterators like this?



Iterators

Iterators give both safety and speed, in code that is often
simpler and closer to the way we think

Compare:
“add 1 to each value in the vector”
and
“for val in v do { val = val + 1; }”

And we know the loop is “safe”, e.g., we won’t access beyond
the ends of vectors



Iterators

Iterators give both safety and speed, in code that is often
simpler and closer to the way we think

Compare:
“add 1 to each value in the vector”
and
“for val in v do { val = val + 1; }”

And we know the loop is “safe”, e.g., we won’t access beyond
the ends of vectors



Iterators

Iterators give both safety and speed, in code that is often
simpler and closer to the way we think

Compare:
“add 1 to each value in the vector”
and
“for val in v do { val = val + 1; }”

And we know the loop is “safe”, e.g., we won’t access beyond
the ends of vectors



Iterators

Is there a runtime cost from using these more abstract
iterators?

Depending on the language and compiler, iterators might be

1) slower than the equivalent for loop
2) the same speed (even might compile to identical code)
3) faster (by not needing array bound checks, for example)

These days 2+3 are quite common, but not guaranteed



Iterators

Is there a runtime cost from using these more abstract
iterators?

Depending on the language and compiler, iterators might be

1) slower than the equivalent for loop
2) the same speed (even might compile to identical code)
3) faster (by not needing array bound checks, for example)

These days 2+3 are quite common, but not guaranteed



Iterators

Is there a runtime cost from using these more abstract
iterators?

Depending on the language and compiler, iterators might be

1) slower than the equivalent for loop

2) the same speed (even might compile to identical code)
3) faster (by not needing array bound checks, for example)

These days 2+3 are quite common, but not guaranteed



Iterators

Is there a runtime cost from using these more abstract
iterators?

Depending on the language and compiler, iterators might be

1) slower than the equivalent for loop
2) the same speed (even might compile to identical code)

3) faster (by not needing array bound checks, for example)

These days 2+3 are quite common, but not guaranteed



Iterators

Is there a runtime cost from using these more abstract
iterators?

Depending on the language and compiler, iterators might be

1) slower than the equivalent for loop
2) the same speed (even might compile to identical code)
3) faster (by not needing array bound checks, for example)

These days 2+3 are quite common, but not guaranteed



Iterators

Is there a runtime cost from using these more abstract
iterators?

Depending on the language and compiler, iterators might be

1) slower than the equivalent for loop
2) the same speed (even might compile to identical code)
3) faster (by not needing array bound checks, for example)

These days 2+3 are quite common, but not guaranteed



Iterators

So why do people still use loops?

Many reasons:

• they are unfamiliar with iterators
• the language they are using does not support them
• they are doing something a bit more complicated so

iterators are not so straightforward to use



Iterators

So why do people still use loops?

Many reasons:

• they are unfamiliar with iterators
• the language they are using does not support them
• they are doing something a bit more complicated so

iterators are not so straightforward to use



Iterators

So why do people still use loops?

Many reasons:

• they are unfamiliar with iterators

• the language they are using does not support them
• they are doing something a bit more complicated so

iterators are not so straightforward to use



Iterators

So why do people still use loops?

Many reasons:

• they are unfamiliar with iterators
• the language they are using does not support them

• they are doing something a bit more complicated so
iterators are not so straightforward to use



Iterators

So why do people still use loops?

Many reasons:

• they are unfamiliar with iterators
• the language they are using does not support them
• they are doing something a bit more complicated so

iterators are not so straightforward to use



Iterators

Consider the Python loop

for i in range(1, len(a)):

print(a[i] + a[i-1]);

}

against an iterator version

for (ai, ai1) in zip(a, a[1:]) {

print(ai + ai1);

}

Which is “better”?



Iterators

Note that for loops give you indices

Not so useful when your datastructure is not indexed

Iterators give you the values in your datastructure, and don’t
care what the datastructure is

For a lot of use cases iterators are neater and simpler to use



Iterators

Note that for loops give you indices

Not so useful when your datastructure is not indexed

Iterators give you the values in your datastructure, and don’t
care what the datastructure is

For a lot of use cases iterators are neater and simpler to use



Iterators

Note that for loops give you indices

Not so useful when your datastructure is not indexed

Iterators give you the values in your datastructure, and don’t
care what the datastructure is

For a lot of use cases iterators are neater and simpler to use



Iterators

Note that for loops give you indices

Not so useful when your datastructure is not indexed

Iterators give you the values in your datastructure, and don’t
care what the datastructure is

For a lot of use cases iterators are neater and simpler to use



Iterators

Exercise For C++ hackers. C++ has recently added iterators
under the guise of a special for loop. Read about this

Exercise For Java hackers. Read about Java’s support for
iterators

Exercise Look at Python iterators and enumerate



Iterators
Exercise Advanced Python. Consider the difference in the
code generated for

def sum1(vec):

s = 0

for i in range(len(vec)):

s + vec[i]

return s

and

def sum2(vec):

s = 0

for v in vec:

s += v

return s

(import dis to disassemble code)



Iterators

Exercise Iterators can work on any datastructure where there
is a clear way of going through the elements one-by-one. For
example, trees, lists and hash tables. Think about the code you
need to write to add 1 to every element in a tree (a) using for
loops; (b) using recursion; (c) using an iterator

Exercise Read about maps, a functional version of an iterator

Advanced Exercise Read about internal vs. external iterators



Aside
Zero Cost Abstraction

Iterators (in some languages) can be an example of a zero cost
abstraction

A Zero Cost Abstraction:

• no runtime overhead when you don’t use it
• no runtime overhead in using it, as compiled code

produced is as good as what a programmer could have
done directly

But they allow the programmer to work at a higher, more
abstract level and possibly they are more likely to write correct
code



Aside
Zero Cost Abstraction

Iterators (in some languages) can be an example of a zero cost
abstraction

A Zero Cost Abstraction:

• no runtime overhead when you don’t use it
• no runtime overhead in using it, as compiled code

produced is as good as what a programmer could have
done directly

But they allow the programmer to work at a higher, more
abstract level and possibly they are more likely to write correct
code



Aside
Zero Cost Abstraction

Iterators (in some languages) can be an example of a zero cost
abstraction

A Zero Cost Abstraction:

• no runtime overhead when you don’t use it
• no runtime overhead in using it, as compiled code

produced is as good as what a programmer could have
done directly

But they allow the programmer to work at a higher, more
abstract level and possibly they are more likely to write correct
code



Aside
Zero Cost Abstraction

More colloquially:

• what you don’t use, you don’t pay for
• what you do use, you couldn’t hand code any better.



Aside
Zero Cost Abstraction

For example: iterators in some languages compile down to
code equivalent to (or better than) a for loop, but provide a
“higher-level” way of coding

Meaning your code is not going to run slower due to your use of
this higher-level abstraction

But is possibly less prone to bugs



Aside
Zero Cost Abstraction

For example: iterators in some languages compile down to
code equivalent to (or better than) a for loop, but provide a
“higher-level” way of coding

Meaning your code is not going to run slower due to your use of
this higher-level abstraction

But is possibly less prone to bugs



Aside
Zero Cost Abstraction

For example: iterators in some languages compile down to
code equivalent to (or better than) a for loop, but provide a
“higher-level” way of coding

Meaning your code is not going to run slower due to your use of
this higher-level abstraction

But is possibly less prone to bugs



Aside
Zero Cost Abstraction

In contrast, exceptions (for example) in some languages have
an overhead (of doing extra stuff to deal with possible
exceptions) even if you don’t use them, so these would not be
zero cost

Cost in space as well as time: e.g., in some OO languages
objects are not zero cost on data as they have identifying
headers on values taking up space



Aside
Zero Cost Abstraction

In contrast, exceptions (for example) in some languages have
an overhead (of doing extra stuff to deal with possible
exceptions) even if you don’t use them, so these would not be
zero cost

Cost in space as well as time: e.g., in some OO languages
objects are not zero cost on data as they have identifying
headers on values taking up space



Aside
Zero Cost Abstraction

Zero cost abstractions often do have a cost in slower
compilations!

And it’s using the abstraction that has no cost, as the thing you
are abstracting still might be expensive, regardless of how you
write the code

Perhaps a better description is “zero additional cost
abstraction”

It’s about the ability to write code at a higher level, but not pay a
cost in slower execution



Aside
Zero Cost Abstraction

Zero cost abstractions often do have a cost in slower
compilations!

And it’s using the abstraction that has no cost, as the thing you
are abstracting still might be expensive, regardless of how you
write the code

Perhaps a better description is “zero additional cost
abstraction”

It’s about the ability to write code at a higher level, but not pay a
cost in slower execution



Aside
Zero Cost Abstraction

Zero cost abstractions often do have a cost in slower
compilations!

And it’s using the abstraction that has no cost, as the thing you
are abstracting still might be expensive, regardless of how you
write the code

Perhaps a better description is “zero additional cost
abstraction”

It’s about the ability to write code at a higher level, but not pay a
cost in slower execution



Aside
Zero Cost Abstraction

Zero cost abstractions often do have a cost in slower
compilations!

And it’s using the abstraction that has no cost, as the thing you
are abstracting still might be expensive, regardless of how you
write the code

Perhaps a better description is “zero additional cost
abstraction”

It’s about the ability to write code at a higher level, but not pay a
cost in slower execution



Evaluation

Next: different ways values are passed into function calls

You might think that when you see a function definition and call
like

int f(int p, int q) { ...p...q... }

...

z = f(x+y, x-y);

you understand what is happening!



Evaluation

Next: different ways values are passed into function calls

You might think that when you see a function definition and call
like

int f(int p, int q) { ...p...q... }

...

z = f(x+y, x-y);

you understand what is happening!



Evaluation

Next: different ways values are passed into function calls

You might think that when you see a function definition and call
like

int f(int p, int q) { ...p...q... }

...

z = f(x+y, x-y);

you understand what is happening!



Evaluation

Next: different ways values are passed into function calls

You might think that when you see a function definition and call
like

int f(int p, int q) { ...p...q... }

...

z = f(x+y, x-y);

you understand what is happening!



Aside
Before we start, some words that are often mis-used

• variable: a symbol or name that refers to a memory
location, e.g., x and cos

• expression: a combination of variables, operators and the
like that describe a computation, e.g., 42 and x and x +
cos(y)

• value: some instance of a datatype, e.g., 42 and "hello
world"

• parameters (of a function): the variables in the function
definition, e.g., p and q above

• arguments (of a function call): the values passed in when
calling a function, e.g., in the above the values of the
expressions x+y and x-y



Aside
Before we start, some words that are often mis-used

• variable: a symbol or name that refers to a memory
location, e.g., x and cos

• expression: a combination of variables, operators and the
like that describe a computation, e.g., 42 and x and x +
cos(y)

• value: some instance of a datatype, e.g., 42 and "hello
world"

• parameters (of a function): the variables in the function
definition, e.g., p and q above

• arguments (of a function call): the values passed in when
calling a function, e.g., in the above the values of the
expressions x+y and x-y



Aside
Before we start, some words that are often mis-used

• variable: a symbol or name that refers to a memory
location, e.g., x and cos

• expression: a combination of variables, operators and the
like that describe a computation, e.g., 42 and x and x +
cos(y)

• value: some instance of a datatype, e.g., 42 and "hello
world"

• parameters (of a function): the variables in the function
definition, e.g., p and q above

• arguments (of a function call): the values passed in when
calling a function, e.g., in the above the values of the
expressions x+y and x-y



Aside
Before we start, some words that are often mis-used

• variable: a symbol or name that refers to a memory
location, e.g., x and cos

• expression: a combination of variables, operators and the
like that describe a computation, e.g., 42 and x and x +
cos(y)

• value: some instance of a datatype, e.g., 42 and "hello
world"

• parameters (of a function): the variables in the function
definition, e.g., p and q above

• arguments (of a function call): the values passed in when
calling a function, e.g., in the above the values of the
expressions x+y and x-y



Aside
Before we start, some words that are often mis-used

• variable: a symbol or name that refers to a memory
location, e.g., x and cos

• expression: a combination of variables, operators and the
like that describe a computation, e.g., 42 and x and x +
cos(y)

• value: some instance of a datatype, e.g., 42 and "hello
world"

• parameters (of a function): the variables in the function
definition, e.g., p and q above

• arguments (of a function call): the values passed in when
calling a function, e.g., in the above the values of the
expressions x+y and x-y



Aside

• declaration: where we indicate a symbol is a variable, often
combined with a type declaration, e.g., var y; or int x;
or int inc(int x);

• definition: the first time we give a variable a value, mostly
referring to functions (for non-functions we tend to say
initialisation). Often combined with a declaration, e.g.,
int inc(int x) { return x+1; } or int x = 42;



Aside

• declaration: where we indicate a symbol is a variable, often
combined with a type declaration, e.g., var y; or int x;
or int inc(int x);

• definition: the first time we give a variable a value, mostly
referring to functions (for non-functions we tend to say
initialisation). Often combined with a declaration, e.g.,
int inc(int x) { return x+1; } or int x = 42;



Aside

In particular, be clear on the difference between variables and
values, even though we often use lazy language, e.g., “x is 0”
rather than the more correct “the variable x has the value 0”

Also distinguish between function and function call

cos is a (variable that names a) function (some complicated bit
of code); while cos(1.0) is a function call (that will be
evaluated to produce a value)

Hint. A good way to spot bad programmers at an interview is
when they confuse these concepts

Exercise Look up output parameter and inout parameter

Exercise Find a language where a variable can be a value



Aside

In particular, be clear on the difference between variables and
values, even though we often use lazy language, e.g., “x is 0”
rather than the more correct “the variable x has the value 0”

Also distinguish between function and function call

cos is a (variable that names a) function (some complicated bit
of code); while cos(1.0) is a function call (that will be
evaluated to produce a value)

Hint. A good way to spot bad programmers at an interview is
when they confuse these concepts

Exercise Look up output parameter and inout parameter

Exercise Find a language where a variable can be a value



Aside

In particular, be clear on the difference between variables and
values, even though we often use lazy language, e.g., “x is 0”
rather than the more correct “the variable x has the value 0”

Also distinguish between function and function call

cos is a (variable that names a) function (some complicated bit
of code); while cos(1.0) is a function call (that will be
evaluated to produce a value)

Hint. A good way to spot bad programmers at an interview is
when they confuse these concepts

Exercise Look up output parameter and inout parameter

Exercise Find a language where a variable can be a value



Aside

In particular, be clear on the difference between variables and
values, even though we often use lazy language, e.g., “x is 0”
rather than the more correct “the variable x has the value 0”

Also distinguish between function and function call

cos is a (variable that names a) function (some complicated bit
of code); while cos(1.0) is a function call (that will be
evaluated to produce a value)

Hint. A good way to spot bad programmers at an interview is
when they confuse these concepts

Exercise Look up output parameter and inout parameter

Exercise Find a language where a variable can be a value



Aside

In particular, be clear on the difference between variables and
values, even though we often use lazy language, e.g., “x is 0”
rather than the more correct “the variable x has the value 0”

Also distinguish between function and function call

cos is a (variable that names a) function (some complicated bit
of code); while cos(1.0) is a function call (that will be
evaluated to produce a value)

Hint. A good way to spot bad programmers at an interview is
when they confuse these concepts

Exercise Look up output parameter and inout parameter

Exercise Find a language where a variable can be a value



Aside

Exercise In

int f(int p, int q) { ...p...q... }

...

z = f(x+y, x-y);

identify the variables, expressions, parameters, arguments,
declarations, definitions, functions and function calls



Evaluation

So we have the code:

int f(int p, int q) { ...p...q... }

...

z = f(x+y, x-y);

with a function definition and a corresponding function call



Evaluation
Call by Value

In most languages you are familiar with you expect it to:

• evaluate the arguments x+y and the x-y (in some
order. . . )

• pass those values into f as the values of its parameters p
and q

• execute the body of f with p and q having those values

This is call by value, where the values of the argument
expressions are passed to the function call



Evaluation
Call by Value

In most languages you are familiar with you expect it to:

• evaluate the arguments x+y and the x-y (in some
order. . . )

• pass those values into f as the values of its parameters p
and q

• execute the body of f with p and q having those values

This is call by value, where the values of the argument
expressions are passed to the function call



Evaluation
Call by Value

In most languages you are familiar with you expect it to:

• evaluate the arguments x+y and the x-y (in some
order. . . )

• pass those values into f as the values of its parameters p
and q

• execute the body of f with p and q having those values

This is call by value, where the values of the argument
expressions are passed to the function call



Evaluation
Call by Value

In most languages you are familiar with you expect it to:

• evaluate the arguments x+y and the x-y (in some
order. . . )

• pass those values into f as the values of its parameters p
and q

• execute the body of f with p and q having those values

This is call by value, where the values of the argument
expressions are passed to the function call



Evaluation
Call by Value

In most languages you are familiar with you expect it to:

• evaluate the arguments x+y and the x-y (in some
order. . . )

• pass those values into f as the values of its parameters p
and q

• execute the body of f with p and q having those values

This is call by value, where the values of the argument
expressions are passed to the function call



Evaluation
Call by Value

This is so very common that everyone thinks this is how it is
always done

And computer hardware is built in the expectation this is how it
is done (stacks, etc.)

Example. C, Java. And most others



Evaluation
Call by Value

This is so very common that everyone thinks this is how it is
always done

And computer hardware is built in the expectation this is how it
is done (stacks, etc.)

Example. C, Java. And most others



Evaluation
Call by Value

This is so very common that everyone thinks this is how it is
always done

And computer hardware is built in the expectation this is how it
is done (stacks, etc.)

Example. C, Java. And most others



Evaluation
Call by Reference

Some languages can do things very differently: in C++, for
example, we can write

void inc(int &n)

{

n++;

}

...

int m = 1;

inc(m);

and the value of m is incremented

The argument declaration is read as “int reference n” or “int
ref n” for short



Evaluation
Call by Reference

Some languages can do things very differently: in C++, for
example, we can write

void inc(int &n)

{

n++;

}

...

int m = 1;

inc(m);

and the value of m is incremented

The argument declaration is read as “int reference n” or “int
ref n” for short



Evaluation
Call by Reference

This is a call by reference

It’s not the value of m that gets passed into the function, but (a
reference to) the variable m itself

Meaning, within the function, operations on n are “really”
operations on m

Call by reference passes in the variables, not their values



Evaluation
Call by Reference

This is a call by reference

It’s not the value of m that gets passed into the function, but (a
reference to) the variable m itself

Meaning, within the function, operations on n are “really”
operations on m

Call by reference passes in the variables, not their values



Evaluation
Call by Reference

This is a call by reference

It’s not the value of m that gets passed into the function, but (a
reference to) the variable m itself

Meaning, within the function, operations on n are “really”
operations on m

Call by reference passes in the variables, not their values



Evaluation
Call by Reference

This is a call by reference

It’s not the value of m that gets passed into the function, but (a
reference to) the variable m itself

Meaning, within the function, operations on n are “really”
operations on m

Call by reference passes in the variables, not their values



Evaluation
Call by Reference

So the body of inc is effectively evaluated as

{

m++;

}

Though, in practice, it is implemented in a somewhat different
way



Evaluation
Call by Reference

C++ allows both call by value and call by reference, with by
value the default

Call by reference allows simple looking code like the above that
manipulates variables out of the scope of the function body

Used wisely, it makes for simpler code, potentially more
efficient when than call by value, when those values are large
structures that are slow to copy around

Used unwisely, it is a source of subtle bugs

Note it is generally regarded as bad practice for code to affect
non-local state, e.g., non-local variables, and CBR makes this
easy to do by accident



Evaluation
Call by Reference

C++ allows both call by value and call by reference, with by
value the default

Call by reference allows simple looking code like the above that
manipulates variables out of the scope of the function body

Used wisely, it makes for simpler code, potentially more
efficient when than call by value, when those values are large
structures that are slow to copy around

Used unwisely, it is a source of subtle bugs

Note it is generally regarded as bad practice for code to affect
non-local state, e.g., non-local variables, and CBR makes this
easy to do by accident



Evaluation
Call by Reference

C++ allows both call by value and call by reference, with by
value the default

Call by reference allows simple looking code like the above that
manipulates variables out of the scope of the function body

Used wisely, it makes for simpler code, potentially more
efficient when than call by value, when those values are large
structures that are slow to copy around

Used unwisely, it is a source of subtle bugs

Note it is generally regarded as bad practice for code to affect
non-local state, e.g., non-local variables, and CBR makes this
easy to do by accident



Evaluation
Call by Reference

C++ allows both call by value and call by reference, with by
value the default

Call by reference allows simple looking code like the above that
manipulates variables out of the scope of the function body

Used wisely, it makes for simpler code, potentially more
efficient when than call by value, when those values are large
structures that are slow to copy around

Used unwisely, it is a source of subtle bugs

Note it is generally regarded as bad practice for code to affect
non-local state, e.g., non-local variables, and CBR makes this
easy to do by accident



Evaluation
Call by Reference

C++ allows both call by value and call by reference, with by
value the default

Call by reference allows simple looking code like the above that
manipulates variables out of the scope of the function body

Used wisely, it makes for simpler code, potentially more
efficient when than call by value, when those values are large
structures that are slow to copy around

Used unwisely, it is a source of subtle bugs

Note it is generally regarded as bad practice for code to affect
non-local state, e.g., non-local variables, and CBR makes this
easy to do by accident



Evaluation
Call by Reference

In the example above calling

inc(a[3]);

is fine as a[3] refers to a memory location; now n in the
function is simply a reference to a[3]

But

inc(2*m);

is a code bug, and will not compile! Here, 2*m is an expression
that does not refer to a memory location, which is what inc
expects



Evaluation
Call by Reference

In the example above calling

inc(a[3]);

is fine as a[3] refers to a memory location; now n in the
function is simply a reference to a[3]

But

inc(2*m);

is a code bug, and will not compile! Here, 2*m is an expression
that does not refer to a memory location, which is what inc
expects



Evaluation
Call by Reference

In the example above calling

inc(a[3]);

is fine as a[3] refers to a memory location; now n in the
function is simply a reference to a[3]

But

inc(2*m);

is a code bug, and will not compile! Here, 2*m is an expression
that does not refer to a memory location, which is what inc
expects


