
Evaluation
Call by Reference

More terminology: expressions like x and a[n+1] that refer to
memory locations are called lvalues, as you can put them on
the left side of an assignment: a[n+1] = 42;

An lvalue is associated with a memory location

Lvalues are occasionally called locator values

A non-lvalue is an rvalue, as you find them on the right of an
assignment

Exercise Some languages allow expressions on the left, as
long as they evaluate to an lvalue (memory location). Read
about this

Evaluation
Call by Reference

More terminology: expressions like x and a[n+1] that refer to
memory locations are called lvalues, as you can put them on
the left side of an assignment: a[n+1] = 42;

An lvalue is associated with a memory location

Lvalues are occasionally called locator values

A non-lvalue is an rvalue, as you find them on the right of an
assignment

Exercise Some languages allow expressions on the left, as
long as they evaluate to an lvalue (memory location). Read
about this

Evaluation
Call by Reference

More terminology: expressions like x and a[n+1] that refer to
memory locations are called lvalues, as you can put them on
the left side of an assignment: a[n+1] = 42;

An lvalue is associated with a memory location

Lvalues are occasionally called locator values

A non-lvalue is an rvalue, as you find them on the right of an
assignment

Exercise Some languages allow expressions on the left, as
long as they evaluate to an lvalue (memory location). Read
about this

Evaluation
Call by Reference

More terminology: expressions like x and a[n+1] that refer to
memory locations are called lvalues, as you can put them on
the left side of an assignment: a[n+1] = 42;

An lvalue is associated with a memory location

Lvalues are occasionally called locator values

A non-lvalue is an rvalue, as you find them on the right of an
assignment

Exercise Some languages allow expressions on the left, as
long as they evaluate to an lvalue (memory location). Read
about this

Evaluation
Call by Reference

More terminology: expressions like x and a[n+1] that refer to
memory locations are called lvalues, as you can put them on
the left side of an assignment: a[n+1] = 42;

An lvalue is associated with a memory location

Lvalues are occasionally called locator values

A non-lvalue is an rvalue, as you find them on the right of an
assignment

Exercise Some languages allow expressions on the left, as
long as they evaluate to an lvalue (memory location). Read
about this

Evaluation
Call by Reference

An rvalue does not (necessarily) have an associated memory
location

So things like 42 = n; and (2*m)++; do not make sense

Call by reference works on lvalues only

Evaluation
Call by Reference

An rvalue does not (necessarily) have an associated memory
location

So things like 42 = n; and (2*m)++; do not make sense

Call by reference works on lvalues only

Evaluation
Call by Reference

An rvalue does not (necessarily) have an associated memory
location

So things like 42 = n; and (2*m)++; do not make sense

Call by reference works on lvalues only

Evaluation
Behind the Scenes

In reality, call by reference is implemented by use of pointers,
thus if you wrote code like

void f(int& a) {

a = a + 3;

}

and called it with f(n) this is transformed behind the scenes by
the compiler to the equivalent of

void f(int *a) {

*a = *a + 3;

}

and the function call is rewritten to f(&n)

Evaluation
Behind the Scenes

The advantage is that you write the simpler code without the
proliferation of *s and &s, and the compiler does the pointer
chasing for you

Exercise Work though the code carefully to explain to yourself
that it works as an implementation of call by reference

Evaluation
Behind the Scenes

The advantage is that you write the simpler code without the
proliferation of *s and &s, and the compiler does the pointer
chasing for you

Exercise Work though the code carefully to explain to yourself
that it works as an implementation of call by reference

Evaluation

Exercise Fortran is call by reference, but does allow things like
inc(2*m). Find out what is happening here

Advanced Exercise Read about how lvalues are implicitly
coerced/dereferenced/converted to rvalues on the right of an
assignment

Advanced Exercise Read about Algol 68

Advanced Exercise Read about rvalue references in C++

Evaluation

References are a sharp tool and there are roughly
three different approaches to sharp tools.
• 1. Don’t give programmers sharp tools. They may

make mistakes and cut their fingers off. This is
the Java/Python/Perl/Ruby/PHP... approach.
• 2. Give programmers all the sharp tools they

want. They are professionals and if they cut their
fingers off it’s their own fault. This is the C/C++
approach.
• 3. Give programmers sharp tools, but put guards

on them so they can’t accidentally cut their fingers
off. This is Rust’s approach.

trentj

Evaluation
Call by Name

Call by name takes this a bit further, lifting the restriction that
the arguments are lvalues (memory locations)

For example the function in Algol 60:

integer procedure sumsq(n, m)

integer n, m;

begin

sumsq := (n + m)*(n + m);

end;

that squares the sum of the arguments

Evaluation
Call by Name

Call by name takes this a bit further, lifting the restriction that
the arguments are lvalues (memory locations)

For example the function in Algol 60:

integer procedure sumsq(n, m)

integer n, m;

begin

sumsq := (n + m)*(n + m);

end;

that squares the sum of the arguments

Evaluation
Call by Name

Then

sumsq(x+1, y+2)

is effectively evaluated as

begin

((x+1) + (y+2)) * ((x+1) + (y+2))

end

i.e., the whole expressions in the call are substituted into the
function body, which is then evaluated

Exercise For hackers. Compare with inlining code

Evaluation
Call by Name

Then

sumsq(x+1, y+2)

is effectively evaluated as

begin

((x+1) + (y+2)) * ((x+1) + (y+2))

end

i.e., the whole expressions in the call are substituted into the
function body, which is then evaluated

Exercise For hackers. Compare with inlining code

Evaluation
Implementations avoid name clashes so that local variables in
the function body will never coincide with variables passed in

integer procedure foo(n)

integer n;

begin integer m;

m := 1;

foo := n + m;

end;

And then foo(m + 1) is not evaluated as

begin integer m;

m := 1;

foo := (m + 1) + m;

end;

as here there is inadvertent capture of the outer m by the local m

Evaluation
Implementations avoid name clashes so that local variables in
the function body will never coincide with variables passed in

integer procedure foo(n)

integer n;

begin integer m;

m := 1;

foo := n + m;

end;

And then foo(m + 1) is not evaluated as

begin integer m;

m := 1;

foo := (m + 1) + m;

end;

as here there is inadvertent capture of the outer m by the local m

Evaluation
Implementations avoid name clashes so that local variables in
the function body will never coincide with variables passed in

integer procedure foo(n)

integer n;

begin integer m;

m := 1;

foo := n + m;

end;

And then foo(m + 1) is not evaluated as

begin integer m;

m := 1;

foo := (m + 1) + m;

end;

as here there is inadvertent capture of the outer m by the local m

Evaluation
Implementations avoid name clashes so that local variables in
the function body will never coincide with variables passed in

integer procedure foo(n)

integer n;

begin integer m;

m := 1;

foo := n + m;

end;

And then foo(m + 1) is not evaluated as

begin integer m;

m := 1;

foo := (m + 1) + m;

end;

as here there is inadvertent capture of the outer m by the local m

Evaluation
Implementations avoid name clashes so that local variables in
the function body will never coincide with variables passed in

integer procedure foo(n)

integer n;

begin integer m;

m := 1;

foo := n + m;

end;

And then foo(m + 1) is not evaluated as

begin integer m;

m := 1;

foo := (m + 1) + m;

end;

as here there is inadvertent capture of the outer m by the local m

Evaluation
Call by Name

Rather, something more like

begin integer m001;

m001 := 1;

foo := (m + 1) + m001;

end;

where the local m is renamed

Advanced Exercise Compare with name capture in the
Lambda Calculus, and read about alpha renaming

Exercise Read about Algol 60 and its mechanism for
implementing call by name

Evaluation
Call by Name

Rather, something more like

begin integer m001;

m001 := 1;

foo := (m + 1) + m001;

end;

where the local m is renamed

Advanced Exercise Compare with name capture in the
Lambda Calculus, and read about alpha renaming

Exercise Read about Algol 60 and its mechanism for
implementing call by name

Evaluation
Call by Name

Exercise Read about Jensen’s Device

Exercise Read about fexprs in Lisp

Exercise Does call by reference need local variables to be
renamed?

Evaluation
Call by Name

CBN is an interesting evaluation strategy that is occasionally
more efficient than call by value:

integer procedure k(x, y)

integer x, y;

begin

k := x;

end

...

n = k(1+1, 1+2+3+4+5+6+7);

Here the second argument is not used in the function body, so
will not be substituted in, and therefore not evaluated

Evaluation
Call by Name

CBN is an interesting evaluation strategy that is occasionally
more efficient than call by value:

integer procedure k(x, y)

integer x, y;

begin

k := x;

end

...

n = k(1+1, 1+2+3+4+5+6+7);

Here the second argument is not used in the function body, so
will not be substituted in, and therefore not evaluated

Evaluation
Call by Name

The evaluation is essentially

begin

k := 1+1;

end

Thus using CBN is more efficient than CBV in this example

Exercise How many functions that you have written have had
unused arguments?

Evaluation
Call by Name

The evaluation is essentially

begin

k := 1+1;

end

Thus using CBN is more efficient than CBV in this example

Exercise How many functions that you have written have had
unused arguments?

Evaluation
Call by Name

The evaluation is essentially

begin

k := 1+1;

end

Thus using CBN is more efficient than CBV in this example

Exercise How many functions that you have written have had
unused arguments?

Evaluation
Call by Name

More interestingly, call by name can evaluate some expressions
that call by value cannot:

n = k(1 + 1, infiniteloop());

This will never terminate in a call by value evaluation, but is fine
(though weird) in a call by name evaluation

Thus CBN is a more powerful evaluation mechanism than CBV,
in the sense that it can evaluate a larger class of expressions

Evaluation
Call by Name

More interestingly, call by name can evaluate some expressions
that call by value cannot:

n = k(1 + 1, infiniteloop());

This will never terminate in a call by value evaluation, but is fine
(though weird) in a call by name evaluation

Thus CBN is a more powerful evaluation mechanism than CBV,
in the sense that it can evaluate a larger class of expressions

Evaluation
Call by Name

More interestingly, call by name can evaluate some expressions
that call by value cannot:

n = k(1 + 1, infiniteloop());

This will never terminate in a call by value evaluation, but is fine
(though weird) in a call by name evaluation

Thus CBN is a more powerful evaluation mechanism than CBV,
in the sense that it can evaluate a larger class of expressions

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually relatively expensive, so we don’t often win overall

Modern architectures are designed for CBV, so CBV is almost
always faster in practice

And in the sumsq example above, the x+1 and y+2 are both
evaluated in the body twice, less efficient than a call by value:
((x+1) + (y+2)) * ((x+1) + (y+2))

Algol 60 defaults to CBN, but also allows CBV, for this reason

Exercise Compare with applicative order reduction and normal
order reduction in the Lambda Calculus

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually relatively expensive, so we don’t often win overall

Modern architectures are designed for CBV, so CBV is almost
always faster in practice

And in the sumsq example above, the x+1 and y+2 are both
evaluated in the body twice, less efficient than a call by value:
((x+1) + (y+2)) * ((x+1) + (y+2))

Algol 60 defaults to CBN, but also allows CBV, for this reason

Exercise Compare with applicative order reduction and normal
order reduction in the Lambda Calculus

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually relatively expensive, so we don’t often win overall

Modern architectures are designed for CBV, so CBV is almost
always faster in practice

And in the sumsq example above, the x+1 and y+2 are both
evaluated in the body twice, less efficient than a call by value:
((x+1) + (y+2)) * ((x+1) + (y+2))

Algol 60 defaults to CBN, but also allows CBV, for this reason

Exercise Compare with applicative order reduction and normal
order reduction in the Lambda Calculus

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually relatively expensive, so we don’t often win overall

Modern architectures are designed for CBV, so CBV is almost
always faster in practice

And in the sumsq example above, the x+1 and y+2 are both
evaluated in the body twice, less efficient than a call by value:
((x+1) + (y+2)) * ((x+1) + (y+2))

Algol 60 defaults to CBN, but also allows CBV, for this reason

Exercise Compare with applicative order reduction and normal
order reduction in the Lambda Calculus

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually relatively expensive, so we don’t often win overall

Modern architectures are designed for CBV, so CBV is almost
always faster in practice

And in the sumsq example above, the x+1 and y+2 are both
evaluated in the body twice, less efficient than a call by value:
((x+1) + (y+2)) * ((x+1) + (y+2))

Algol 60 defaults to CBN, but also allows CBV, for this reason

Exercise Compare with applicative order reduction and normal
order reduction in the Lambda Calculus

Evaluation
Call by Need

Next: call by need, or lazy evaluation

A form of call by name that tries to get closer to the efficiency of
call by value, where you only evaluate a given argument at
most once, but with the behaviour and benefits of call by name

Now

sumsq(x+1, y+2)

would evaluate as call by name, but now the x+1 and the y+2
are only evaluated at most once each

Evaluation
Call by Need

Next: call by need, or lazy evaluation

A form of call by name that tries to get closer to the efficiency of
call by value, where you only evaluate a given argument at
most once, but with the behaviour and benefits of call by name

Now

sumsq(x+1, y+2)

would evaluate as call by name, but now the x+1 and the y+2
are only evaluated at most once each

Evaluation
Call by Need

Next: call by need, or lazy evaluation

A form of call by name that tries to get closer to the efficiency of
call by value, where you only evaluate a given argument at
most once, but with the behaviour and benefits of call by name

Now

sumsq(x+1, y+2)

would evaluate as call by name, but now the x+1 and the y+2
are only evaluated at most once each

Evaluation
Call by Need

The argument evaluations are memoised, i.e., remembered, so
when the same expression is seen again (within the function
body), the previously computed valued can simply be reused

The trade-off here is single evaluation of the arguments against
a more complicated evaluation mechanism

Evaluation
Call by Need

The argument evaluations are memoised, i.e., remembered, so
when the same expression is seen again (within the function
body), the previously computed valued can simply be reused

The trade-off here is single evaluation of the arguments against
a more complicated evaluation mechanism

Evaluation
Call by Need

)((x + 1) + (y + 2)) * (+

Memoisation of expressions

The memoisation will even notice the outer addition, and not
re-evaluate that

Examples. Haskell and Miranda; also see special forms like
delay and similar in some languages, e.g., Scheme

Evaluation
Call by Need

)((x + 1) + (y + 2)) * (+

Memoisation of expressions

The memoisation will even notice the outer addition, and not
re-evaluate that

Examples. Haskell and Miranda; also see special forms like
delay and similar in some languages, e.g., Scheme

Evaluation
Call by Need

)((x + 1) + (y + 2)) * (+

Memoisation of expressions

The memoisation will even notice the outer addition, and not
re-evaluate that

Examples. Haskell and Miranda; also see special forms like
delay and similar in some languages, e.g., Scheme

Evaluation
Call by Need

Call by need does need some care with expressions that are
supposed to produce a different value each time you evaluate
them

For example, read() and random():
is random() + random() always the same even number?

Exercise Read about referential transparency

Evaluation
Call by Need

Call by need does need some care with expressions that are
supposed to produce a different value each time you evaluate
them

For example, read() and random():
is random() + random() always the same even number?

Exercise Read about referential transparency

Evaluation
Call by Need

Call by need does need some care with expressions that are
supposed to produce a different value each time you evaluate
them

For example, read() and random():
is random() + random() always the same even number?

Exercise Read about referential transparency

Evaluation
Call by Need

Call by need is good, but is an expensive mechanism. You don’t
want to pay that cost when you are not using laziness

Proponents of languages like Haskell claim that, when given
code that doesn’t need the power of call by need, the compiler
can analyse the code and compile it in “the normal way” so
avoiding the cost of laziness and memoisation

This is true, if the compiler is good enough

There has been a long history of language design predicated
on the future existence of a “sufficiently clever compiler”

Mostly, that compiler was never created

Evaluation
Call by Need

Call by need is good, but is an expensive mechanism. You don’t
want to pay that cost when you are not using laziness

Proponents of languages like Haskell claim that, when given
code that doesn’t need the power of call by need, the compiler
can analyse the code and compile it in “the normal way” so
avoiding the cost of laziness and memoisation

This is true, if the compiler is good enough

There has been a long history of language design predicated
on the future existence of a “sufficiently clever compiler”

Mostly, that compiler was never created

Evaluation
Call by Need

Call by need is good, but is an expensive mechanism. You don’t
want to pay that cost when you are not using laziness

Proponents of languages like Haskell claim that, when given
code that doesn’t need the power of call by need, the compiler
can analyse the code and compile it in “the normal way” so
avoiding the cost of laziness and memoisation

This is true, if the compiler is good enough

There has been a long history of language design predicated
on the future existence of a “sufficiently clever compiler”

Mostly, that compiler was never created

Evaluation
Call by Need

Call by need is good, but is an expensive mechanism. You don’t
want to pay that cost when you are not using laziness

Proponents of languages like Haskell claim that, when given
code that doesn’t need the power of call by need, the compiler
can analyse the code and compile it in “the normal way” so
avoiding the cost of laziness and memoisation

This is true, if the compiler is good enough

There has been a long history of language design predicated
on the future existence of a “sufficiently clever compiler”

Mostly, that compiler was never created

Evaluation
Call by Need

Call by need is good, but is an expensive mechanism. You don’t
want to pay that cost when you are not using laziness

Proponents of languages like Haskell claim that, when given
code that doesn’t need the power of call by need, the compiler
can analyse the code and compile it in “the normal way” so
avoiding the cost of laziness and memoisation

This is true, if the compiler is good enough

There has been a long history of language design predicated
on the future existence of a “sufficiently clever compiler”

Mostly, that compiler was never created

Evaluation
Call by Need

Perhaps, in the last few years, such compilers are just about
beginning to appear

But we have still a long way to go to as people keep inventing
new ideas that need clever compiler support

Evaluation
Call by Need

Perhaps, in the last few years, such compilers are just about
beginning to appear

But we have still a long way to go to as people keep inventing
new ideas that need clever compiler support

Evaluation
Laziness

Perhaps surprisingly, laziness is a feature that has been
supported in many languages (in a small way) for a long time:
called short-circuit evaluation

Quite often, the logical operators, like and and or and others
(perhaps written && and ||, etc.) are lazy

For example, x == 0.0 || 1.0/x == 2.0 is evaluated lazily

Evaluate the x == 0.0 first. If true, the whole expression is
true, and the 1.0/x == 2.0 never gets evaluated

Only if x == 0.0 returns false does the 1.0/x == 2.0 get
evaluated

Evaluation
Laziness

Perhaps surprisingly, laziness is a feature that has been
supported in many languages (in a small way) for a long time:
called short-circuit evaluation

Quite often, the logical operators, like and and or and others
(perhaps written && and ||, etc.) are lazy

For example, x == 0.0 || 1.0/x == 2.0 is evaluated lazily

Evaluate the x == 0.0 first. If true, the whole expression is
true, and the 1.0/x == 2.0 never gets evaluated

Only if x == 0.0 returns false does the 1.0/x == 2.0 get
evaluated

Evaluation
Laziness

Perhaps surprisingly, laziness is a feature that has been
supported in many languages (in a small way) for a long time:
called short-circuit evaluation

Quite often, the logical operators, like and and or and others
(perhaps written && and ||, etc.) are lazy

For example, x == 0.0 || 1.0/x == 2.0 is evaluated lazily

Evaluate the x == 0.0 first. If true, the whole expression is
true, and the 1.0/x == 2.0 never gets evaluated

Only if x == 0.0 returns false does the 1.0/x == 2.0 get
evaluated

Evaluation
Laziness

Perhaps surprisingly, laziness is a feature that has been
supported in many languages (in a small way) for a long time:
called short-circuit evaluation

Quite often, the logical operators, like and and or and others
(perhaps written && and ||, etc.) are lazy

For example, x == 0.0 || 1.0/x == 2.0 is evaluated lazily

Evaluate the x == 0.0 first. If true, the whole expression is
true, and the 1.0/x == 2.0 never gets evaluated

Only if x == 0.0 returns false does the 1.0/x == 2.0 get
evaluated

Evaluation
Laziness

Perhaps surprisingly, laziness is a feature that has been
supported in many languages (in a small way) for a long time:
called short-circuit evaluation

Quite often, the logical operators, like and and or and others
(perhaps written && and ||, etc.) are lazy

For example, x == 0.0 || 1.0/x == 2.0 is evaluated lazily

Evaluate the x == 0.0 first. If true, the whole expression is
true, and the 1.0/x == 2.0 never gets evaluated

Only if x == 0.0 returns false does the 1.0/x == 2.0 get
evaluated

Evaluation
Laziness

So this is lazy evaluation

Of course this is done in many languages as it is a useful thing

If x == 0.0 || 1.0/x == 2.0 is evaluated eagerly, there will
be problems when x is 0.0

It means, though, that && and || are not like other operators,
such as + and &, which are evaluated normally. And so they
have to be treated differently in the compiler

Evaluation
Laziness

So this is lazy evaluation

Of course this is done in many languages as it is a useful thing

If x == 0.0 || 1.0/x == 2.0 is evaluated eagerly, there will
be problems when x is 0.0

It means, though, that && and || are not like other operators,
such as + and &, which are evaluated normally. And so they
have to be treated differently in the compiler

Evaluation
Laziness

So this is lazy evaluation

Of course this is done in many languages as it is a useful thing

If x == 0.0 || 1.0/x == 2.0 is evaluated eagerly, there will
be problems when x is 0.0

It means, though, that && and || are not like other operators,
such as + and &, which are evaluated normally. And so they
have to be treated differently in the compiler

Evaluation
Laziness

So this is lazy evaluation

Of course this is done in many languages as it is a useful thing

If x == 0.0 || 1.0/x == 2.0 is evaluated eagerly, there will
be problems when x is 0.0

It means, though, that && and || are not like other operators,
such as + and &, which are evaluated normally. And so they
have to be treated differently in the compiler

Evaluation
Laziness

Exercise Make sure you understand the difference between
the & and the && operators

Exercise For C++ geeks: you can overload && and so on in
C++. What happens to the evaluation?

Exercise What happens in foo() || bar() if the functions
have side-effects?

Exercise Investigate extended boolean operators, such as in
Python and JavaScript

Evaluation

More examples to compare call by whatever. Suppose we have

struct Big {

int stuff[1000];

int things[1000];

};

This structure might occupy 8000 bytes

Aside
“Big values”

Be careful about saying “a big value”: this is ambiguous and
can mean two different things

It can mean the size of the value represented, or the size of the
memory used to store the value

If you have int n = 100000000; then the value of n is a big
value, but the variable n occupies maybe just 4 bytes

The array int v[1000] is a big value in the sense it occupies
a large number of bytes

So always make it clear what you mean

Aside
“Big values”

Be careful about saying “a big value”: this is ambiguous and
can mean two different things

It can mean the size of the value represented, or the size of the
memory used to store the value

If you have int n = 100000000; then the value of n is a big
value, but the variable n occupies maybe just 4 bytes

The array int v[1000] is a big value in the sense it occupies
a large number of bytes

So always make it clear what you mean

Aside
“Big values”

Be careful about saying “a big value”: this is ambiguous and
can mean two different things

It can mean the size of the value represented, or the size of the
memory used to store the value

If you have int n = 100000000; then the value of n is a big
value, but the variable n occupies maybe just 4 bytes

The array int v[1000] is a big value in the sense it occupies
a large number of bytes

So always make it clear what you mean

Aside
“Big values”

Be careful about saying “a big value”: this is ambiguous and
can mean two different things

It can mean the size of the value represented, or the size of the
memory used to store the value

If you have int n = 100000000; then the value of n is a big
value, but the variable n occupies maybe just 4 bytes

The array int v[1000] is a big value in the sense it occupies
a large number of bytes

So always make it clear what you mean

Aside
“Big values”

Be careful about saying “a big value”: this is ambiguous and
can mean two different things

It can mean the size of the value represented, or the size of the
memory used to store the value

If you have int n = 100000000; then the value of n is a big
value, but the variable n occupies maybe just 4 bytes

The array int v[1000] is a big value in the sense it occupies
a large number of bytes

So always make it clear what you mean

Evaluation

Then if b is a struct Big we get

call by value
foo(b); slow, as it copies 8000 bytes of b into the function

So many languages (e.g., C) support pointers:
bar(&b); fast, copies 8 (typically) bytes of pointer into the
function, and we use this reference in the function

Evaluation

Then if b is a struct Big we get

call by value
foo(b); slow, as it copies 8000 bytes of b into the function

So many languages (e.g., C) support pointers:
bar(&b); fast, copies 8 (typically) bytes of pointer into the
function, and we use this reference in the function

Evaluation

call by reference
foo(b); fast, as it copies only (say) 8 bytes of reference to b
(e.g., a pointer) into the function

Evaluation

call by name
foo(b); the expression b is substituted into function; cost
likely moderately high without a good optimiser

Evaluation

call by need
foo(b); as call by name, but with extra complication of the
memoisation check

Which is best in real life? It depends

On the language, how it implements stuff, the cleverness of the
compiler writers, the data, the computation, and many other
things

Evaluation

call by need
foo(b); as call by name, but with extra complication of the
memoisation check

Which is best in real life? It depends

On the language, how it implements stuff, the cleverness of the
compiler writers, the data, the computation, and many other
things

Evaluation

CBV is fast on values that occupy few bytes; slow on values
that occupy many bytes

CBR is moderately fast on all sizes; but slower than CBR on
values that occupy a small number of bytes

And slower as it needs to do pointer chasing to get to the value
in the function body

And so on

Evaluation

CBV is fast on values that occupy few bytes; slow on values
that occupy many bytes

CBR is moderately fast on all sizes; but slower than CBR on
values that occupy a small number of bytes

And slower as it needs to do pointer chasing to get to the value
in the function body

And so on

Evaluation

CBV is fast on values that occupy few bytes; slow on values
that occupy many bytes

CBR is moderately fast on all sizes; but slower than CBR on
values that occupy a small number of bytes

And slower as it needs to do pointer chasing to get to the value
in the function body

And so on

Evaluation

CBV is fast on values that occupy few bytes; slow on values
that occupy many bytes

CBR is moderately fast on all sizes; but slower than CBR on
values that occupy a small number of bytes

And slower as it needs to do pointer chasing to get to the value
in the function body

And so on

Evaluation

Exercise Many other evaluation strategies have been thought
about. Read about them

Exercise What is the difference between call by reference and
using references in a call by value language?

Exercise Is Java call by value or call by reference? Explain
(take care: the Java Language Specification differs in its
definitions of some terms)

Evaluation

Exercise What is Python’s calling mechanism?

Exercise Consider the following Python code

>>> x = [1,2,3]

>>> y = x

>>> x.append(4)

>>> x

[1, 2, 3, 4]

>>> y

What is the value of y? Explain. Then explain the result of
doing x.append(x)

Evaluation

Exercise For C++ hackers. C++ has native CBR. Read about
how to use lambdas to mimic call by name

Exercise Explain if is possible to mimic CBR in Python

Exercise Read about generators (more generally, coroutines)
as a way an eager language can mimic lazy behaviour

Exercise Read about thunks as a way an eager language can
mimic lazy behaviour

Advanced Exercise How do C++’s rvalue references differ
from call by name?

Evaluation

Exercise

func foo(n) {

if (n < 2) { return 1; }

return n*foo(n-1);

}

Trace the evaluation of this function in a call by need language

Exercise Read about how lazy evaluation enables you to
describe (effectively) infinite datastructures

Exercise Some people regard lazy evaluation as declarative.
Do you agree with this?

Exercise Some people regard lazy evaluation as dataflow. Do
you agree with this?

Application

Carrying on looking at general features of languages. . .

In contrast to the “generic” languages, several applications
areas have languages specifically designed for that area

Sometimes called domain specific languages (DSL)

Example. HTML for doing web pages

Example. Maple for doing maths. The basic datatypes are
numbers, variables, polynomials, matrices, functions (trig, exp,
etc.) and the like. The basic operations are arithmetics of all
these things, integration, differentiation, and so on

Application

Carrying on looking at general features of languages. . .

In contrast to the “generic” languages, several applications
areas have languages specifically designed for that area

Sometimes called domain specific languages (DSL)

Example. HTML for doing web pages

Example. Maple for doing maths. The basic datatypes are
numbers, variables, polynomials, matrices, functions (trig, exp,
etc.) and the like. The basic operations are arithmetics of all
these things, integration, differentiation, and so on

Application

Carrying on looking at general features of languages. . .

In contrast to the “generic” languages, several applications
areas have languages specifically designed for that area

Sometimes called domain specific languages (DSL)

Example. HTML for doing web pages

Example. Maple for doing maths. The basic datatypes are
numbers, variables, polynomials, matrices, functions (trig, exp,
etc.) and the like. The basic operations are arithmetics of all
these things, integration, differentiation, and so on

Application

Carrying on looking at general features of languages. . .

In contrast to the “generic” languages, several applications
areas have languages specifically designed for that area

Sometimes called domain specific languages (DSL)

Example. HTML for doing web pages

Example. Maple for doing maths. The basic datatypes are
numbers, variables, polynomials, matrices, functions (trig, exp,
etc.) and the like. The basic operations are arithmetics of all
these things, integration, differentiation, and so on

Application

Carrying on looking at general features of languages. . .

In contrast to the “generic” languages, several applications
areas have languages specifically designed for that area

Sometimes called domain specific languages (DSL)

Example. HTML for doing web pages

Example. Maple for doing maths. The basic datatypes are
numbers, variables, polynomials, matrices, functions (trig, exp,
etc.) and the like. The basic operations are arithmetics of all
these things, integration, differentiation, and so on

Application

> diff(ln(x), x);

1/x

> int(sin(x), x);

-cos(x)

Application
> expand((x+1)^100);

100 99 98 97 96 95

1 + x + 100 x + 4950 x + 161700 x + 3921225 x + 75287520 x

94 93 92 91

+ 1192052400 x + 16007560800 x + 186087894300 x + 1902231808400 x

90 89 88

+ 17310309456440 x + 141629804643600 x + 1050421051106700 x

87 86 85

+ 7110542499799200 x + 44186942677323600 x + 253338471349988640 x

84 83

+ 1345860629046814650 x + 6650134872937201800 x

82 81

+ 30664510802988208300 x + 132341572939212267400 x

80 79

+ 535983370403809682970 x + 2041841411062132125600 x

78 77

+ 7332066885177656269200 x + 24865270306254660391200 x

76 75

+ 79776075565900368755100 x + 242519269720337121015504 x

...

Application

Cobol: business. Data on employees, payroll and so on

Fortran: numerical computation. Numbers and almost nothing
else

Application

Cobol: business. Data on employees, payroll and so on

Fortran: numerical computation. Numbers and almost nothing
else

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display

Cisco IOS (Internetwork Operating System): Networking
hardware

Makefile, Scons, Ant, Ninja, Meson, etc.: languages for project
code builds

R (derived from the earlier S): for statistical analysis

And so on

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display

Cisco IOS (Internetwork Operating System): Networking
hardware

Makefile, Scons, Ant, Ninja, Meson, etc.: languages for project
code builds

R (derived from the earlier S): for statistical analysis

And so on

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display

Cisco IOS (Internetwork Operating System): Networking
hardware

Makefile, Scons, Ant, Ninja, Meson, etc.: languages for project
code builds

R (derived from the earlier S): for statistical analysis

And so on

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display

Cisco IOS (Internetwork Operating System): Networking
hardware

Makefile, Scons, Ant, Ninja, Meson, etc.: languages for project
code builds

R (derived from the earlier S): for statistical analysis

And so on

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display

Cisco IOS (Internetwork Operating System): Networking
hardware

Makefile, Scons, Ant, Ninja, Meson, etc.: languages for project
code builds

R (derived from the earlier S): for statistical analysis

And so on

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display

Cisco IOS (Internetwork Operating System): Networking
hardware

Makefile, Scons, Ant, Ninja, Meson, etc.: languages for project
code builds

R (derived from the earlier S): for statistical analysis

And so on

Application

It is so easy to create new language these days, people rarely
stop to consider whether they should: is there an existing
language that would suit this application well?

Exercise Go, Rust, Zig, Julia and Swift are new languages
presently being developed. Look at them and decide what is
new and different in each language (if anything)

Application

It is so easy to create new language these days, people rarely
stop to consider whether they should: is there an existing
language that would suit this application well?

Exercise Go, Rust, Zig, Julia and Swift are new languages
presently being developed. Look at them and decide what is
new and different in each language (if anything)

