Bits and Pieces

Errors

Error Handling

None. E.g., early Fortran

Bits and Pieces

Errors

Error Handling
None. E.g., early Fortran

Exercise Read about IEEE Not a Number (NaN)

Bits and Pieces

Error Codes

Error codes. E.g., C

Bits and Pieces

Error Codes

Error codes. E.g., C

Functions return error codes, e.g., special values like 0 or —1 to
indicate an error, and other values are the returned value

Bits and Pieces

Error Codes

Error codes. E.g., C

Functions return error codes, e.g., special values like 0 or —1 to
indicate an error, and other values are the returned value

For example, the POSIX file read function returns the number
of bytes read; or —1 in the case of an error

Bits and Pieces

Error Codes

Error codes. E.g., C

Functions return error codes, e.g., special values like 0 or —1 to
indicate an error, and other values are the returned value

For example, the POSIX file read function returns the number
of bytes read; or —1 in the case of an error

n = read(...);
if (n < 0) { ...error case... 1}
else { ...use data... 7}

Bits and Pieces

Error Codes

However, such codes are easily (and often) ignored, leading to
buggy code

Bits and Pieces

Error Codes

However, such codes are easily (and often) ignored, leading to
buggy code

n = read(...);
...use data...

Bits and Pieces

Error Codes

However, such codes are easily (and often) ignored, leading to
buggy code

n = read(...);
...use data...

Or even:
read(...);
...use data...

where the programmer doesn’t even check that the read read
the right number of bytes

Bits and Pieces

Error Codes

However, such codes are easily (and often) ignored, leading to
buggy code

n = read(...);
...use data...

Or even:
read(...);
...use data...

where the programmer doesn’t even check that the read read
the right number of bytes

Error values are chosen by convention and not enforced by the
language

Bits and Pieces

Error Codes

You might find conventions like:

e 0 is success, while non-0 indicates an error (and indicates
what kind of error)

Bits and Pieces

Error Codes

You might find conventions like:

e 0 is success, while non-0 indicates an error (and indicates
what kind of error)

® non-0 is success, while 0 indicates an error

Bits and Pieces

Error Codes
You might find conventions like:

e 0 is success, while non-0 indicates an error (and indicates
what kind of error)

® non-0 is success, while 0 indicates an error

® non-negative is success, while negative indicates an error
(and indicates what kind of error)

Bits and Pieces

Error Codes

You might find conventions like:

e 0 is success, while non-0 indicates an error (and indicates
what kind of error)

® non-0 is success, while 0 indicates an error

® non-negative is success, while negative indicates an error
(and indicates what kind of error)

¢ and so on for other return types

Bits and Pieces

Error Codes

You might find conventions like:

e 0 is success, while non-0 indicates an error (and indicates
what kind of error)

® non-0 is success, while 0 indicates an error

® non-negative is success, while negative indicates an error
(and indicates what kind of error)

¢ and so on for other return types

You have to read the documentation for the functions you are
using to determine how errors are coded

Bits and Pieces

Error Codes

You might find conventions like:

e 0 is success, while non-0 indicates an error (and indicates
what kind of error)

® non-0 is success, while 0 indicates an error

® non-negative is success, while negative indicates an error
(and indicates what kind of error)

¢ and so on for other return types

You have to read the documentation for the functions you are
using to determine how errors are coded

Widely use in real code, e.g., see the POSIX standard

Bits and Pieces

Error Codes

Sometimes it is hard to pick a special value to return to indicate
an error, e.g., in the case all integer values are possible
returned values

Bits and Pieces

Error Codes

Sometimes it is hard to pick a special value to return to indicate
an error, e.g., in the case all integer values are possible
returned values

And what to do if the function needs to return a value as well as
an error code?

Bits and Pieces

Error Codes

Sometimes it is hard to pick a special value to return to indicate
an error, e.g., in the case all integer values are possible
returned values

And what to do if the function needs to return a value as well as
an error code?

So another convention is to return a value in a pointer passed
in as an argument and use the function return for purely the
error code

Bits and Pieces

Error Codes

int foo(int arg, int *retval) {

// ok case
*retval = stuff; // return value
return 0; // indicate ok

// error case
return 1; // indicate error

Bits and Pieces

Error Codes

int foo(int arg, int *retval) {
// ok case
xretval = stuff; // return value

return 0; // indicate ok

// error case
return 1; // indicate error

This is called by something like

Bits and Pieces

Error Codes

int foo(int arg, int *retval) {

// ok case
xretval = stuff; // return value
return 0; // indicate ok

// error case
return 1; // indicate error

This is called by something like
int value = 0;
err = foo(42, &value);

// now check to see if value is ok
if (err) { ... }

Bits and Pieces

Error Codes

This is more flexible than the straight error code return, but is (a
tiny bit) more sophisticated to write

Bits and Pieces

Error Codes

This is more flexible than the straight error code return, but is (a
tiny bit) more sophisticated to write

There is barely more incentive to check the error, as it is still
easy to ignore the error value

Bits and Pieces

Error Codes

This is more flexible than the straight error code return, but is (a
tiny bit) more sophisticated to write

There is barely more incentive to check the error, as it is still
easy to ignore the error value

And error values are still chosen by convention and not
enforced by the language

Bits and Pieces

Error Codes

An alternative is to return an error code value in a pointer
argument, and have the result as the normal returned value:
value = foo(42, &err);

Bits and Pieces

Error Codes

An alternative is to return an error code value in a pointer
argument, and have the result as the normal returned value:
value = foo(42, &err);

This way at least reminds the programmer that an error is
possible

Bits and Pieces

Error Codes

An alternative is to return an error code value in a pointer

argument, and have the result as the normal returned value:
value = foo(42, &err);

This way at least reminds the programmer that an error is
possible

Both alternatives are widely used in real code

Bits and Pieces

Error Codes

An alternative is to return an error code value in a pointer
argument, and have the result as the normal returned value:
value = foo(42, &err);

This way at least reminds the programmer that an error is
possible

Both alternatives are widely used in real code

And you can see it takes a bit of effort from the programmer to
check for an error, so they often “forget” to do so

Bits and Pieces

Error Codes

An alternative is to return an error code value in a pointer
argument, and have the result as the normal returned value:
value = foo(42, &err);

This way at least reminds the programmer that an error is
possible

Both alternatives are widely used in real code

And you can see it takes a bit of effort from the programmer to
check for an error, so they often “forget” to do so

Of course, they really should deal with errors!

Bits and Pieces
Global Error Codes

Some systems have a special global variable to indicate errors

Bits and Pieces
Global Error Codes

Some systems have a special global variable to indicate errors

For example, C uses the integer errno, and some functions set
this to particular values to indicate an error: usually O indicate
“no error”

Bits and Pieces
Global Error Codes

Some systems have a special global variable to indicate errors

For example, C uses the integer errno, and some functions set
this to particular values to indicate an error: usually O indicate
“no error”

This can be used for functions whose return values can'’t be
used as error values

Bits and Pieces
Global Error Codes

Some systems have a special global variable to indicate errors

For example, C uses the integer errno, and some functions set
this to particular values to indicate an error: usually O indicate
“no error”

This can be used for functions whose return values can'’t be
used as error values

value = foo(42);
if (errno !'=0) { ... }

Bits and Pieces
Global Error Codes

Unfortunately, this removes any prompt to the programmer to
check for errors: a variable that doesn’t even appear in your
code gets set?

Bits and Pieces
Global Error Codes

Unfortunately, this removes any prompt to the programmer to
check for errors: a variable that doesn’t even appear in your

code gets set?

So very easy to ignore

Bits and Pieces
Global Error Codes

Unfortunately, this removes any prompt to the programmer to
check for errors: a variable that doesn’t even appear in your
code gets set?

So very easy to ignore

errno is also widely used by POSIX

Bits and Pieces
Global Error Codes

Error values are chosen by convention and not enforced by the
language

Bits and Pieces
Global Error Codes

Error values are chosen by convention and not enforced by the
language

Also, this doesn’t interact well with parallel code, where
different threads may simultaneously want to set errno to
different values

Bits and Pieces
Global Error Codes

Error values are chosen by convention and not enforced by the
language

Also, this doesn’t interact well with parallel code, where
different threads may simultaneously want to set errno to
different values

Exercise Read about the hacks C requires to mitigate the
parallel errno problem

Bits and Pieces

Error Codes

Languages that can return multiple values (e.g., Go) can return
aresult, error pair for the same effect in a neater way

Bits and Pieces

Error Codes

Languages that can return multiple values (e.g., Go) can return
aresult, error pair for the same effect in a neater way

val, err = lotsafun(x);

Bits and Pieces

Error Codes

Languages that can return multiple values (e.g., Go) can return
aresult, error pair for the same effect in a neater way

val, err = lotsafun(x);

Though, again, it is still easy to ignore the error value

Bits and Pieces

Error Codes

Languages that can return multiple values (e.g., Go) can return
aresult, error pair for the same effect in a neater way

val, err = lotsafun(x);

Though, again, it is still easy to ignore the error value

// ignore error as my code is perfect
val, _ = lotsafun(x);

Bits and Pieces

Exceptions

Exceptions. E.g., Java, Python. Changing flow of control by a
jump in the error case using constructs like try, catch,
throws, finally

Bits and Pieces

Exceptions

Exceptions. E.g., Java, Python. Changing flow of control by a
jump in the error case using constructs like try, catch,
throws, finally

Verbose and infectious: an error case deep in the code can
bubble up (via throws) and need to be treated (or explicitly
ignored: bad practice) in many other areas of code

Bits and Pieces

Exceptions

Exceptions. E.g., Java, Python. Changing flow of control by a
jump in the error case using constructs like try, catch,
throws, finally

Verbose and infectious: an error case deep in the code can
bubble up (via throws) and need to be treated (or explicitly
ignored: bad practice) in many other areas of code

Quite often you have to deal with an exception in code that is
far removed from its cause, so the programmer has less of a
clue about what caused the error

Bits and Pieces

Exceptions

Some languages require you to notate explicitly where
exceptions might occur:

int foo(int n) throws BadException {
. something that can cause a BadException ...

}

or something that calls something that calls something that
calls something .. .that can cause a BadException

Bits and Pieces

Exceptions

Some languages require you to notate explicitly where
exceptions might occur:

int foo(int n) throws BadException {
. something that can cause a BadException ...

}

or something that calls something that calls something that
calls something .. .that can cause a BadException

Here the good thing is that the compiler enforces checking for
errors: whenever we use foo we have to write code to deal with
the possibility of the BadException

Bits and Pieces

Exceptions

Some languages require you to notate explicitly where
exceptions might occur:

int foo(int n) throws BadException {
. something that can cause a BadException ...

}

or something that calls something that calls something that
calls something .. .that can cause a BadException

Here the good thing is that the compiler enforces checking for
errors: whenever we use foo we have to write code to deal with
the possibility of the BadException

No matter how deeply nested or far away is the code that does
the BadException

Bits and Pieces

Exceptions

Used widely (Java), but often hated due to the overhead of the
exception mechanism (code runs more slowly) and the
non-local flow of control through various catch blocks

Bits and Pieces

Exceptions

Used widely (Java), but often hated due to the overhead of the
exception mechanism (code runs more slowly) and the
non-local flow of control through various catch blocks

And hated simply because it forces the programmer to deal
with errors

Bits and Pieces

Exceptions

Used widely (Java), but often hated due to the overhead of the
exception mechanism (code runs more slowly) and the
non-local flow of control through various catch blocks

And hated simply because it forces the programmer to deal
with errors

A common statement by programmers is “l know this code can'’t
go wrong, so | don’t have to deal with an error case here”

Bits and Pieces

Exceptions

Used widely (Java), but often hated due to the overhead of the
exception mechanism (code runs more slowly) and the
non-local flow of control through various catch blocks

And hated simply because it forces the programmer to deal
with errors

A common statement by programmers is “l know this code can'’t
go wrong, so | don’t have to deal with an error case here”

Of course, this usually just demonstrates the programmer’s lack
of understanding of their own code

Bits and Pieces

Exceptions

Equally, exceptions are liked by others, as they separate out
error handling from the general flow of the code

Bits and Pieces

Exceptions

Equally, exceptions are liked by others, as they separate out
error handling from the general flow of the code

The “everything ok case” can be written simply, while the “error
case” is kept mostly separate in an error handler

Bits and Pieces

Exceptions

Equally, exceptions are liked by others, as they separate out
error handling from the general flow of the code

The “everything ok case” can be written simply, while the “error
case” is kept mostly separate in an error handler

Though, the positive thing is that for the most part, the compiler
makes it hard for the programmer to avoid dealing with the error
cases somewhere — or be explicit in ignoring errors

Bits and Pieces

Exceptions

Equally, exceptions are liked by others, as they separate out
error handling from the general flow of the code

The “everything ok case” can be written simply, while the “error
case” is kept mostly separate in an error handler

Though, the positive thing is that for the most part, the compiler
makes it hard for the programmer to avoid dealing with the error
cases somewhere — or be explicit in ignoring errors

Thus forcing the programmer to write better code

Bits and Pieces

Exceptions

Equally, exceptions are liked by others, as they separate out
error handling from the general flow of the code

The “everything ok case” can be written simply, while the “error
case” is kept mostly separate in an error handler

Though, the positive thing is that for the most part, the compiler
makes it hard for the programmer to avoid dealing with the error
cases somewhere — or be explicit in ignoring errors

Thus forcing the programmer to write better code

Exercise But read about unchecked exceptions, like
RuntimeException in Java

Bits and Pieces

Exceptions

Comparing with error codes: exceptions give a better
description of the error than error code

Bits and Pieces

Exceptions

Comparing with error codes: exceptions give a better
description of the error than error code

Exceptions can contain information about the error; or they can
have types even allowing an OO approach to error
management

Bits and Pieces

Exceptions

Comparing with error codes: exceptions give a better
description of the error than error code

Exceptions can contain information about the error; or they can
have types even allowing an OO approach to error
management

Error codes are notoriously not standardised across libraries
(and often not within a single library!)

Bits and Pieces

Exceptions

Exceptions have code potentially far from the problem point:
hard to fix the problem and continue from the point of error

Bits and Pieces

Exceptions

Exceptions have code potentially far from the problem point:
hard to fix the problem and continue from the point of error

Error codes you can deal with the problem directly at the point
of error and continue, e.g., try again

Bits and Pieces

Exceptions

Exceptions have code potentially far from the problem point:
hard to fix the problem and continue from the point of error

Error codes you can deal with the problem directly at the point
of error and continue, e.g., try again

With exceptions you write the error handling code once and
reuse it. Error codes need code for each place they might occur

Bits and Pieces
Result Types

Result Types. E.g., Rust

Bits and Pieces
Result Types

Result Types. E.g., Rust

A function returns a union type, e.g., Result<i32,String>
that contains the result (an integer 132) or an error message
(the String)

fn doit(n: i32) -> Result<i32, String> { ... }

Bits and Pieces
Result Types

Result Types. E.g., Rust

A function returns a union type, e.g., Result<i32,String>
that contains the result (an integer 132) or an error message
(the String)

fn doit(n: i32) -> Result<i32, String> { ... }

The important thing here is that this is not an integer value that
is returned in the non-error case: you can’t get at the value
without actively “unwrapping” the returned Result

Bits and Pieces
Result Types

Result Types. E.g., Rust

A function returns a union type, e.g., Result<i32,String>
that contains the result (an integer 132) or an error message
(the String)

fn doit(n: i32) -> Result<i32, String> { ... }

The important thing here is that this is not an integer value that
is returned in the non-error case: you can’t get at the value
without actively “unwrapping” the returned Result

The programmer is forced to write code to get at the returned
value, so they might as well deal with the error case while they
are at it

Bits and Pieces
Result Types

This again forces the code to deal with the error case or
explicitly ignore it

Bits and Pieces
Result Types

This again forces the code to deal with the error case or
explicitly ignore it

Not as verbose as exceptions, generally coding is a bit cleaner

Bits and Pieces
Result Types

This again forces the code to deal with the error case or
explicitly ignore it

Not as verbose as exceptions, generally coding is a bit cleaner

Exercise Python has a None value you can use to indicate
errors, e.g., a function returns an integer or None. Compare
with using union types

Advanced Exercise Sometimes you see people using the
word monads in the context of these types to get category
theorists interested. Read about this

Bits and Pieces

Error Handlers

Next: Common Lisp has error handlers: code that executes in
the context of the error, i.e., without unwinding the stack

Bits and Pieces

Error Handlers

Next: Common Lisp has error handlers: code that executes in
the context of the error, i.e., without unwinding the stack

Roughly analogous to interrupt handlers in operating systems

Bits and Pieces

Error Handlers

Next: Common Lisp has error handlers: code that executes in
the context of the error, i.e., without unwinding the stack

Roughly analogous to interrupt handlers in operating systems

You can throw the error, like an exception, jumping to some
other remote part of the code, but more interestingly you also
can restart from the point of error, and thereby continue after

“fixing” the error

Bits and Pieces

Error Handlers

Next: Common Lisp has error handlers: code that executes in
the context of the error, i.e., without unwinding the stack

Roughly analogous to interrupt handlers in operating systems

You can throw the error, like an exception, jumping to some
other remote part of the code, but more interestingly you also
can restart from the point of error, and thereby continue after
“fixing” the error

You can even insert new value to continue with: e.g., continue
from a division by 0 error with 3.14 (not a good idea)

Bits and Pieces

Errors

And, of course, there are languages that mix these approaches!

Exercise Investigate the various ways Python deals with errors

Bits and Pieces
Scoping

We now look at different ways languages use scopes

Bits and Pieces
Scoping

We now look at different ways languages use scopes

Recall: the scope of a variable is the region of code where that
variable can be used to refer to a particular value

Bits and Pieces
Scoping

We now look at different ways languages use scopes

Recall: the scope of a variable is the region of code where that
variable can be used to refer to a particular value

{
int x = 1; S
S
{
double x = 2.0;
¥
S

Bits and Pieces
Scoping

We now look at different ways languages use scopes

Recall: the scope of a variable is the region of code where that
variable can be used to refer to a particular value

{
int x = 1; S
S
{
double x = 2.0;
¥
S
}

The scope of the outer version of x in this code is the regions of
code marked by S

Bits and Pieces
Scoping

Note that the value of the outer x continues to exist, even
though it cannot be referred to within the inner block

{

int x = 1;

{
double x = 2.0;

MMEMEMEmmm|

Bits and Pieces
Scoping

Note that the value of the outer x continues to exist, even
though it cannot be referred to within the inner block

{

int x = 1;

{
double x = 2.0;

MMEMEMEmmm|

The extent of the value is the region marked by E

Bits and Pieces
Scoping

So scope is where a value is accessible through the given
variable

Bits and Pieces
Scoping

So scope is where a value is accessible through the given
variable

Extent is where a value exists

Bits and Pieces
Scoping

So scope is where a value is accessible through the given
variable

Extent is where a value exists

The extent can be difficult to determine, which is why we have
the various GC, reference counting and other mechanisms

Bits and Pieces
Scoping

Consider the (poor) code in a random language
int a = 23;

void foo() {

printf("foo a = %d\n", a);
}
void bar() {
int a = 42;
printf("bar a = %d\n", a);
foo();

}

What do you expect to see if you call bar () ?

Bits and Pieces

Scoping

Do you expect to see int a = 23;
bar a = 42 void foo() {
foo a = 23 printf("foo a = %d\n", a);

T
or void bar() {

int a = 42;

bar a = 42 printf("bar a = %d\n", a);
foo a = 42 fooQ);

T

Bits and Pieces

Scoping

Do you expect to see int a = 23;
bar a = 42 void foo() {
foo a = 23 printf("foo a = %d\n", a);

T
or void bar() {

int a = 42;

bar a = 42 printf("bar a = %d\n", a);
foo a = 42 fooQ);

T
?

In some languages you get the first, others the second

Bits and Pieces
Scoping

It comes down to what you think the variable a in foo refers to:

void foo() {
printf("foo a = %d\n", a);
}

Bits and Pieces
Scoping

It comes down to what you think the variable a in foo refers to:

void foo() {
printf("foo a = %d\n", a);
}

In some languages the a refers to the global a with value 23

Bits and Pieces
Scoping

It comes down to what you think the variable a in foo refers to:

void foo() {
printf("foo a = %d\n", a);
}
In some languages the a refers to the global a with value 23

In other languages the a refers to the a from bar with value 42

Bits and Pieces
Scoping

The first, probably the more common these days, is called
lexical scoping (also: static scoping), as the variable refers to
the scope of a you can see in the code text, the global a

Bits and Pieces
Scoping

The first, probably the more common these days, is called
lexical scoping (also: static scoping), as the variable refers to
the scope of a you can see in the code text, the global a

The second, which used to be more common than is it now, is
called dynamic scoping, as it refers to the scope of a that was
most recent in the execution of the code, namely the local one
in bar

Bits and Pieces
Scoping

The first, probably the more common these days, is called
lexical scoping (also: static scoping), as the variable refers to
the scope of a you can see in the code text, the global a

The second, which used to be more common than is it now, is
called dynamic scoping, as it refers to the scope of a that was

most recent in the execution of the code, namely the local one
in bar

Another static vs. dynamic!

Bits and Pieces
Scoping

We can think of dynamic binding as using the latest binding in
the current execution stack

Bits and Pieces
Scoping

We can think of dynamic binding as using the latest binding in
the current execution stack

So, when we enter a new function we can have new dynamic
bindings

Bits and Pieces
Scoping

We can think of dynamic binding as using the latest binding in
the current execution stack

So, when we enter a new function we can have new dynamic
bindings

When referring to a variable, we look up the execution stack to
find the most recent binding for that variable

Bits and Pieces
Scoping

We can think of dynamic binding as using the latest binding in
the current execution stack

So, when we enter a new function we can have new dynamic
bindings

When referring to a variable, we look up the execution stack to
find the most recent binding for that variable

And when we exit a function, these dynamic bindings are
removed

Bits and Pieces
Scoping

With dynamic scoping, the call to foo is happening within the
dynamic scope of the binding a = 23

Bits and Pieces
Scoping

With dynamic scoping, the call to foo is happening within the
dynamic scope of the binding a = 23

When bar exits, that binding of a finishes, so a subsequent call
to foo would refer to the global a or whatever the latest binding
for a was

Bits and Pieces
Scoping

With dynamic scoping, the call to foo is happening within the
dynamic scope of the binding a = 23

When bar exits, that binding of a finishes, so a subsequent call
to foo would refer to the global a or whatever the latest binding
for a was

bar(); foo();

might print

bar a = 42

foo a = 42

foo a = 23 outside of the scope (and extent) of bar’s a

Bits and Pieces
Scoping

Lisp and Perl support both lexical and dynamic scopes

Bits and Pieces
Scoping

Lisp and Perl support both lexical and dynamic scopes

Some Lisps have special forms like (dynamic x) vs. the
simple lexical x to be visually distinct, helping the programmer

Bits and Pieces
Scoping

Lisp and Perl support both lexical and dynamic scopes

Some Lisps have special forms like (dynamic x) vs. the
simple lexical x to be visually distinct, helping the programmer

Other Lisps (and Perl) don’t, so the programmer has to figure
out what is happening for themselves: is a variable reference
lexical or dynamic?

Bits and Pieces
Scoping

Lexical scope is about how the text of the program is set out

Bits and Pieces
Scoping

Lexical scope is about how the text of the program is set out

With lexical it is generally easier to understand what a variable
means as you can read the code

Bits and Pieces
Scoping

Lexical scope is about how the text of the program is set out

With lexical it is generally easier to understand what a variable
means as you can read the code

And most modern programmers are used to this way of doing
things, though this wasn’t always the case

Bits and Pieces
Scoping

Dynamic scope is about how the code of the program is
executed

Bits and Pieces
Scoping

Dynamic scope is about how the code of the program is
executed

For example, with dynamic, if you have a lot of state in variables
that many functions all need to access you don’t need to pass
them as arguments to the function, but just use dynamic
bindings for them

Bits and Pieces
Scoping

Dynamic scope is about how the code of the program is
executed

For example, with dynamic, if you have a lot of state in variables
that many functions all need to access you don’t need to pass
them as arguments to the function, but just use dynamic
bindings for them

It give a kind of “local global” variable; global to this part of the
execution

Bits and Pieces
Scoping

Dynamic scope is about how the code of the program is
executed

For example, with dynamic, if you have a lot of state in variables
that many functions all need to access you don’t need to pass
them as arguments to the function, but just use dynamic
bindings for them

It give a kind of “local global” variable; global to this part of the
execution

But code can be much harder to read for those unfamiliar with
the concept

Bits and Pieces
Scoping

fun manipulate_window(win: Window) {
int w = win.width; // dynamic bind sizes
int h = win.height;
area();

}

fun area() {
printf("area = %d\n", w * h); // use sizes

3

Bits and Pieces
Scoping

Global or non-local state is considered dangerous these days
so dynamic scope is a lot less common

Bits and Pieces
Scoping

Global or non-local state is considered dangerous these days
so dynamic scope is a lot less common

Particularly in parallel code: it's unclear what behaviour we
would want from a dynamic scope across threads

Bits and Pieces
Scoping

Global or non-local state is considered dangerous these days
so dynamic scope is a lot less common

Particularly in parallel code: it's unclear what behaviour we
would want from a dynamic scope across threads

But in the right hands dynamic scoping can be very useful

Bits and Pieces
Scoping

Exercise With lexical binding the variable you use is not
important to the execution; given code with local variable x you
can rewrite it to use y (barring name clashes). What about
renaming when using dynamic scoping?

Bits and Pieces
Scoping

Exercise With lexical binding the variable you use is not
important to the execution; given code with local variable x you
can rewrite it to use y (barring name clashes). What about
renaming when using dynamic scoping?

Advanced Exercise Look at thread local values, a concept
related to dynamic scope, that is in common use

Bits and Pieces
Scoping

Exercise With lexical binding the variable you use is not
important to the execution; given code with local variable x you
can rewrite it to use y (barring name clashes). What about
renaming when using dynamic scoping?

Advanced Exercise Look at thread local values, a concept
related to dynamic scope, that is in common use

Exercise Work through and understand the Perl code on the
next slide

Bits and Pieces

$a = 23;
sub foo() { print "foo =", $a, "\n"; }

sub barL() {

my ($a) = 42;
print "barL = ", $a, "\n";
&foo();

}

sub barD() {
local($a) = 42;
print "barD = ", $a, "\n";
&foo();

}

print "Lex\n"; &barL(); print "Dyn\n"; &barD();

Bits and Pieces
Scoping

Exercise And this IATEX:

\def\msg{there}
\def\one{hello \msg}
\def\two{\def\msg{world}\one}
\def\main{\one\two}

\main

And this Bash:

MSG=there

function one { echo hello $MSG; }
function two { MSG=world one; }
function main { one; two; }

main

Bits and Pieces
Scoping

Exercise Other kinds of scope: investigate the difference in
JavaScript between declaring variables with var and let

Bits and Pieces

Managed and Unmanaged

Managed/Unmanaged

Bits and Pieces

Managed and Unmanaged

Managed/Unmanaged

Often associated with bytecode languages with VMs is the idea
of a managed language

Bits and Pieces

Managed and Unmanaged

Managed/Unmanaged

Often associated with bytecode languages with VMs is the idea
of a managed language

This produces code (often byte-compiled like Java and C#, but
not exclusively, e.g., JavaScript and Go) that only runs under a
run-time abstract machine, and not natively

Bits and Pieces

Managed and Unmanaged

Managed/Unmanaged

Often associated with bytecode languages with VMs is the idea
of a managed language

This produces code (often byte-compiled like Java and C#, but
not exclusively, e.g., JavaScript and Go) that only runs under a
run-time abstract machine, and not natively

The emphasis here is that the run-time then manages memory,
usually including a GC, and does security checking, e.g., on
memory accesses and other resources, such as network
connections

Bits and Pieces

Managed and Unmanaged

The idea that this is a “safe” language, running in a secure
sandbox, preventing all kinds of nasty things from happening:

memory overruns, execution of virus code, connecting to rogue
Web sites, and so on

Bits and Pieces

Managed and Unmanaged

The idea that this is a “safe” language, running in a secure
sandbox, preventing all kinds of nasty things from happening:
memory overruns, execution of virus code, connecting to rogue
Web sites, and so on

The VM runtime enforces policy on what the program is allowed
to do

Bits and Pieces

Managed and Unmanaged

The idea extends to managed data, where (some or all of) the
data is managed

Bits and Pieces

Managed and Unmanaged

The idea extends to managed data, where (some or all of) the
data is managed

For example (a deprecated extension to) C++ (a native
compiled language) allows objects to be managed or
unmanaged

Bits and Pieces

Managed and Unmanaged

The idea extends to managed data, where (some or all of) the
data is managed

For example (a deprecated extension to) C++ (a native
compiled language) allows objects to be managed or
unmanaged

Inaccurately and misleadingly, but to a decent approximation

managed = bytecode
unmanaged = native compiled

and the word “managed” is mostly used to make “unmanaged”
sound bad by comparison

Bits and Pieces

Managed and Unmanaged

The intended perception is that
Managed: safety

Unmanaged: speed

Bits and Pieces

Managed and Unmanaged

The intended perception is that
Managed: safety
Unmanaged: speed

Though this is a false dichotomy: you can get both

Bits and Pieces

Managed and Unmanaged

Note: the concept of “managed code” was invented by
Microsoft for .Net, but is now used more widely for languages
that execute in a runtime that provides support, management of
resources (not just memory), and safety checking of the
execution

