
Object Oriented Languages

We are now going to spend some more time looking at OO
languages as they are important and have a wide variety of
variants amongst themselves

It’s a big family

Many people have the implicit assumption that if you know Java
then you know all about OO

This is far from the truth: the Java way of doing OO is just one
way of many



Object Oriented Languages

We are now going to spend some more time looking at OO
languages as they are important and have a wide variety of
variants amongst themselves

It’s a big family

Many people have the implicit assumption that if you know Java
then you know all about OO

This is far from the truth: the Java way of doing OO is just one
way of many



Object Oriented Languages

We are now going to spend some more time looking at OO
languages as they are important and have a wide variety of
variants amongst themselves

It’s a big family

Many people have the implicit assumption that if you know Java
then you know all about OO

This is far from the truth: the Java way of doing OO is just one
way of many



Object Oriented Languages

We are now going to spend some more time looking at OO
languages as they are important and have a wide variety of
variants amongst themselves

It’s a big family

Many people have the implicit assumption that if you know Java
then you know all about OO

This is far from the truth: the Java way of doing OO is just one
way of many



Object Oriented Languages

It is sometimes said that an OO language is typified by

“Abstraction, Encapsulation, Inheritance,
Polymorphism”



Object Oriented Languages

Abstraction: a high level view, where irrelevant details are
hidden. Helps programming at a “higher” concept level. E.g., A
Dog can bark() but you don’t need to know how it does that to
use that code in your program

Encapsulation: structure and implementation kept hidden from
the programmer behind a well-defined interface. Allows
changing details of implementation at a lower level without
affecting the higher levels. A way of enforcing abstraction



Object Oriented Languages

Abstraction: a high level view, where irrelevant details are
hidden. Helps programming at a “higher” concept level. E.g., A
Dog can bark() but you don’t need to know how it does that to
use that code in your program

Encapsulation: structure and implementation kept hidden from
the programmer behind a well-defined interface. Allows
changing details of implementation at a lower level without
affecting the higher levels. A way of enforcing abstraction



Object Oriented Languages

Inheritance: allowing properties to be shared in a hierarchy,
thus avoiding re-implementation across related objects.
Generally using classes to describe the hierarchy

Polymorphism: treating different objects in different ways
depending on their type/class. Allow the same “idea” to apply in
different ways, e.g., a Dog and a Cat can both eat(), but in
different ways



Object Oriented Languages

Inheritance: allowing properties to be shared in a hierarchy,
thus avoiding re-implementation across related objects.
Generally using classes to describe the hierarchy

Polymorphism: treating different objects in different ways
depending on their type/class. Allow the same “idea” to apply in
different ways, e.g., a Dog and a Cat can both eat(), but in
different ways



Object Oriented Languages

We shall see the several ways that this statement (AEIP) is
wrong!

Or, at least, a very limited viewpoint

But for some people, they are defining features of what it
means to be OO

Thus excluding a wide range of very useful languages!



Object Oriented Languages

We shall see the several ways that this statement (AEIP) is
wrong!

Or, at least, a very limited viewpoint

But for some people, they are defining features of what it
means to be OO

Thus excluding a wide range of very useful languages!



Object Oriented Languages

We shall see the several ways that this statement (AEIP) is
wrong!

Or, at least, a very limited viewpoint

But for some people, they are defining features of what it
means to be OO

Thus excluding a wide range of very useful languages!



Object Oriented Languages

We shall see the several ways that this statement (AEIP) is
wrong!

Or, at least, a very limited viewpoint

But for some people, they are defining features of what it
means to be OO

Thus excluding a wide range of very useful languages!



Object Oriented Languages

Similarly, many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about messaging objects

Classes are secondary, and sometimes not there at all!

And there are OO languages with classes, but no inheritance



Object Oriented Languages

Similarly, many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about messaging objects

Classes are secondary, and sometimes not there at all!

And there are OO languages with classes, but no inheritance



Object Oriented Languages

Similarly, many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about messaging objects

Classes are secondary, and sometimes not there at all!

And there are OO languages with classes, but no inheritance



Object Oriented Languages

Similarly, many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about messaging objects

Classes are secondary, and sometimes not there at all!

And there are OO languages with classes, but no inheritance



Object Oriented Languages

Similarly, many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about messaging objects

Classes are secondary, and sometimes not there at all!

And there are OO languages with classes, but no inheritance



Object Oriented Languages

OOP to me means only messaging, local retention and
protection and hiding of state-process, and extreme
late-binding of all things.

Alan Kay (invented the term “object oriented”)

The notion of object oriented programming is com-
pletely misunderstood. It’s not about objects and
classes, it’s all about messages.

Alan Kay



Object Oriented Languages

From ISO/IEC 2382:2015 Information technology - Vocabulary

object-oriented:
pertaining to a technique or a programming language
that supports objects, classes, and inheritance

Note 1 to entry: Some authorities list the following re-
quirements for object-oriented programming: informa-
tion hiding or encapsulation, data abstraction, mes-
sage passing, polymorphism, dynamic binding, and in-
heritance.



Object Oriented Languages

Exercise Another (better?) characterisation is

• Single Responsibility Principle
• Encapsulation
• Abstraction
• Minimal Coupling

Read about this



Object Oriented Languages

Exercise You will also find SOLID

• Single Responsibility Principle
• Open-Closed principle
• Liskov substitution principle
• Interface segregation principle
• dependency inversion principle

Read about this

Exercise For later. Come back and revisit SEAM and SOLID
when we have gone though OO in detail



Object Oriented Languages

It was obvious to me 20-some years ago that OOP
wasn’t a panacea. That’s the reason C++ supports sev-
eral design and programming styles.

In the first edition of “The C++ Programming Lan-
guage,” I didn’t use the phrase “object-oriented pro-
gramming” because I didn’t want to feed the hype. One
of the problems with OOP is exactly that unscrupulous
people have hyped it as a panacea. Overselling some-
thing inevitably leads to disappointments.

Bjarne Stroustrup, Feb 2000 (24 years ago!)



Object Oriented Languages

Language historians put the emergence of the idea of objects
and classes in a purpose-designed language perhaps as far
back as 1962 with Simula, a discrete event simulation
language, and more definitely in 1967 with Simula 67

People had been exploring the ideas using Lisp, but this seems
to be the first language designed to be OO

Simula looks like a mixture of Pascal and Java, and has been
described as “Algol plus classes”



Object Oriented Languages

Language historians put the emergence of the idea of objects
and classes in a purpose-designed language perhaps as far
back as 1962 with Simula, a discrete event simulation
language, and more definitely in 1967 with Simula 67

People had been exploring the ideas using Lisp, but this seems
to be the first language designed to be OO

Simula looks like a mixture of Pascal and Java, and has been
described as “Algol plus classes”



Object Oriented Languages

Language historians put the emergence of the idea of objects
and classes in a purpose-designed language perhaps as far
back as 1962 with Simula, a discrete event simulation
language, and more definitely in 1967 with Simula 67

People had been exploring the ideas using Lisp, but this seems
to be the first language designed to be OO

Simula looks like a mixture of Pascal and Java, and has been
described as “Algol plus classes”



Object Oriented Languages

Simula has constructs like objects, classes, subclasses and
methods that eventually followed through C++ directly into Java

C++ is Simula in wolf’s clothing

Bjarne Stroustrup

However, it was with Smalltalk in 1972 that the OO concept
really took off and influenced “modern” languages like C++ and
Java



Object Oriented Languages

Simula has constructs like objects, classes, subclasses and
methods that eventually followed through C++ directly into Java

C++ is Simula in wolf’s clothing

Bjarne Stroustrup

However, it was with Smalltalk in 1972 that the OO concept
really took off and influenced “modern” languages like C++ and
Java



Object Oriented Languages

Simula has constructs like objects, classes, subclasses and
methods that eventually followed through C++ directly into Java

C++ is Simula in wolf’s clothing

Bjarne Stroustrup

However, it was with Smalltalk in 1972 that the OO concept
really took off and influenced “modern” languages like C++ and
Java



Object Oriented Languages

The original SmallTalk ideas of what defines OO were

• message passing
• isolation of objects
• polymorphism

Notice no mention of inheritance!



Object Oriented Languages
Feet

• Simula: ?

• Smalltalk: You send the message shoot to gun, with
selectors bullet and myFoot. A window pops up saying
Gunpowder doesNotUnderstand: spark. After several
fruitless hours spent browsing the methods for Trigger,
FiringPin and IdealGas, you take the easy way out and
create ShotFoot, a subclass of Foot with an additional
instance variable bulletHole



Object Oriented Languages
Feet

• Simula: ?
• Smalltalk: You send the message shoot to gun, with

selectors bullet and myFoot. A window pops up saying
Gunpowder doesNotUnderstand: spark. After several
fruitless hours spent browsing the methods for Trigger,
FiringPin and IdealGas, you take the easy way out and
create ShotFoot, a subclass of Foot with an additional
instance variable bulletHole



Object Oriented Languages
Reflection

Smalltalk was a very advanced version of OO: it introduced
metaclasses, classes that determine the behaviour of other
classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful



Object Oriented Languages
Reflection

Smalltalk was a very advanced version of OO: it introduced
metaclasses, classes that determine the behaviour of other
classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful



Object Oriented Languages
Reflection

Smalltalk was a very advanced version of OO: it introduced
metaclasses, classes that determine the behaviour of other
classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful



Object Oriented Languages
Reflection

Smalltalk was a very advanced version of OO: it introduced
metaclasses, classes that determine the behaviour of other
classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful



Object Oriented Languages
Reflection

Smalltalk was a very advanced version of OO: it introduced
metaclasses, classes that determine the behaviour of other
classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

Time permitting, we will look in more depth at these ideas later



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

Time permitting, we will look in more depth at these ideas later



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

Time permitting, we will look in more depth at these ideas later



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

Time permitting, we will look in more depth at these ideas later



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

Time permitting, we will look in more depth at these ideas later



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

Time permitting, we will look in more depth at these ideas later



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects
(i.e., methods)

Even addition is a message: 2 + 3 is the syntax that sends the
message + with argument 3 to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects
(i.e., methods)

Even addition is a message: 2 + 3 is the syntax that sends the
message + with argument 3 to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects
(i.e., methods)

Even addition is a message: 2 + 3 is the syntax that sends the
message + with argument 3 to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects
(i.e., methods)

Even addition is a message: 2 + 3 is the syntax that sends the
message + with argument 3 to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects
(i.e., methods)

Even addition is a message: 2 + 3 is the syntax that sends the
message + with argument 3 to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax



Object Oriented Languages

Smalltalk prompted a lot of research into OO in the 70s and 80s

And many different styles of OO were proposed including
features called prototyping and delegation, and then
Lisp-based languages featuring multiple inheritance and
metaobject protocols

We shall be looking at these in turn, but we shall start with the
most familiar kind of OO: that typified by having classes
arranged in a hierarchy



Object Oriented Languages

Smalltalk prompted a lot of research into OO in the 70s and 80s

And many different styles of OO were proposed including
features called prototyping and delegation, and then
Lisp-based languages featuring multiple inheritance and
metaobject protocols

We shall be looking at these in turn, but we shall start with the
most familiar kind of OO: that typified by having classes
arranged in a hierarchy



Object Oriented Languages

Smalltalk prompted a lot of research into OO in the 70s and 80s

And many different styles of OO were proposed including
features called prototyping and delegation, and then
Lisp-based languages featuring multiple inheritance and
metaobject protocols

We shall be looking at these in turn, but we shall start with the
most familiar kind of OO: that typified by having classes
arranged in a hierarchy



Object Oriented Languages
Classes

Classes are things that gather together descriptions of the
structure (how and which values are stored in the object,
perhaps in memory, perhaps elsewhere) and the behaviour
(the methods) of certain objects

For code reuse, many languages allow classes to have
subclasses that inherit and extend the structure and/or
behaviour of the parent class



Object Oriented Languages
Classes

Classes are things that gather together descriptions of the
structure (how and which values are stored in the object,
perhaps in memory, perhaps elsewhere) and the behaviour
(the methods) of certain objects

For code reuse, many languages allow classes to have
subclasses that inherit and extend the structure and/or
behaviour of the parent class



Object Oriented Languages
Class Hierarchy

The class hierarchy is the relationship between classes

This can be in a tree, where a class inherits from a single
parent class (single inheritance); or a directed acyclic graph
(DAG) when classes can inherit from more than one parent
(multiple inheritance)

B C

A

D

E F

G

A B C

ED

F

A Tree and a DAG



Object Oriented Languages
Class Hierarchy

The class hierarchy is the relationship between classes

This can be in a tree, where a class inherits from a single
parent class (single inheritance); or a directed acyclic graph
(DAG) when classes can inherit from more than one parent
(multiple inheritance)

B C

A

D

E F

G

A B C

ED

F

A Tree and a DAG



Object Oriented Languages
Class Hierarchy

Both trees and DAGs have an important property: no loops

A loop would entail a class inheriting (possibly indirectly) from
itself

Thus we do not allow loops in the class hierarchy



Object Oriented Languages
Class Hierarchy

Both trees and DAGs have an important property: no loops

A loop would entail a class inheriting (possibly indirectly) from
itself

Thus we do not allow loops in the class hierarchy



Object Oriented Languages
Class Hierarchy

Both trees and DAGs have an important property: no loops

A loop would entail a class inheriting (possibly indirectly) from
itself

Thus we do not allow loops in the class hierarchy



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are
first-class, being things that can be created and manipulated in
the program

Classes are objects!

So they are actually instances of other classes

In languages, e.g., C++ and Java, classes are part of the
program design but not first-class objects in the system

Exercise But (later) look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are
first-class, being things that can be created and manipulated in
the program

Classes are objects!

So they are actually instances of other classes

In languages, e.g., C++ and Java, classes are part of the
program design but not first-class objects in the system

Exercise But (later) look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are
first-class, being things that can be created and manipulated in
the program

Classes are objects!

So they are actually instances of other classes

In languages, e.g., C++ and Java, classes are part of the
program design but not first-class objects in the system

Exercise But (later) look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are
first-class, being things that can be created and manipulated in
the program

Classes are objects!

So they are actually instances of other classes

In languages, e.g., C++ and Java, classes are part of the
program design but not first-class objects in the system

Exercise But (later) look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are
first-class, being things that can be created and manipulated in
the program

Classes are objects!

So they are actually instances of other classes

In languages, e.g., C++ and Java, classes are part of the
program design but not first-class objects in the system

Exercise But (later) look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are
first-class, being things that can be created and manipulated in
the program

Classes are objects!

So they are actually instances of other classes

In languages, e.g., C++ and Java, classes are part of the
program design but not first-class objects in the system

Exercise But (later) look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language



Object Oriented Languages

<object>

<number>

<integer><float>

<double−float> <fpi>

2.3 42

<class>

A Small Part of the EuLisp Class Hierarchy (simplified)

There are two hierarchies in this diagram



Object Oriented Languages

<object>

<number>

<integer><float>

<double−float> <fpi>

<class>

Inheritance hierarchy

Solid arrow is inherits from/subclass/extends/
refines/specialises/subset

This is the normal “class inheritance diagram”



Object Oriented Languages

<object>

<number>

<integer><float>

<double−float> <fpi>

2.3 42

<class>

Instance hierarchy

Dotted arrow is instance of /member of /is a;



Object Oriented Languages

Every object is an instance of a class (dotted arrow);
sometimes called a member of that class.

Exercise Think about the relationship between set theory and
classes and objects: members and instances; subsets and
subclasses



Object Oriented Languages

Every object is an instance of a class (dotted arrow);
sometimes called a member of that class.

Exercise Think about the relationship between set theory and
classes and objects: members and instances; subsets and
subclasses



Object Oriented Languages

So, for example, the integer 42 is an instance of the class
<fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how values in the instances
are stored); and behaviour (the methods)

Of course, it may override or add to either: generally you add or
override methods, but just add to attributes



Object Oriented Languages

So, for example, the integer 42 is an instance of the class
<fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how values in the instances
are stored); and behaviour (the methods)

Of course, it may override or add to either: generally you add or
override methods, but just add to attributes



Object Oriented Languages

So, for example, the integer 42 is an instance of the class
<fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how values in the instances
are stored); and behaviour (the methods)

Of course, it may override or add to either: generally you add or
override methods, but just add to attributes



Object Oriented Languages

So, for example, the integer 42 is an instance of the class
<fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how values in the instances
are stored); and behaviour (the methods)

Of course, it may override or add to either: generally you add or
override methods, but just add to attributes



Object Oriented Languages

So, for example, the integer 42 is an instance of the class
<fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how values in the instances
are stored); and behaviour (the methods)

Of course, it may override or add to either: generally you add or
override methods, but just add to attributes



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

And the class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

And the class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

And the class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

And the class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

And the class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes



Object Oriented Languages

Exercise For Java, C++, Common Lisp, EuLisp and any others
determine their initial class hierarchy



Object Oriented Languages
Kinds of OO Language

C++ Java Smalltalk Lisp

fixed protocol metaobject protocol

class centred

Javascript

object centred

delegation traits

RustSelf

prototyping

object oriented

A classification of OO languages

Note: non-exclusive properties

Exercise In this picture, determine which are instance links and
which are inheritance links!



Object Oriented Languages
Kinds of OO Language

C++ Java Smalltalk Lisp

fixed protocol metaobject protocol

class centred

Javascript

object centred

delegation traits

RustSelf

prototyping

object oriented

A classification of OO languages

Note: non-exclusive properties

Exercise In this picture, determine which are instance links and
which are inheritance links!



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea they all share is the use of encapsulation of
state within an object

While things like classes and inheritance are extras

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea they all share is the use of encapsulation of
state within an object

While things like classes and inheritance are extras

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea they all share is the use of encapsulation of
state within an object

While things like classes and inheritance are extras

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea they all share is the use of encapsulation of
state within an object

While things like classes and inheritance are extras

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea they all share is the use of encapsulation of
state within an object

While things like classes and inheritance are extras

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand


