
Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic functions (see

later), shared by instances
• attributes/slots/values defined in classes, attached to

instances (or shared within classes)
• single or multiple inheritance defined through the

relationships between the classes



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic functions (see

later), shared by instances
• attributes/slots/values defined in classes, attached to

instances (or shared within classes)
• single or multiple inheritance defined through the

relationships between the classes



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic functions (see

later), shared by instances
• attributes/slots/values defined in classes, attached to

instances (or shared within classes)
• single or multiple inheritance defined through the

relationships between the classes



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)

• instances of those classes
• methods attached to classes or generic functions (see

later), shared by instances
• attributes/slots/values defined in classes, attached to

instances (or shared within classes)
• single or multiple inheritance defined through the

relationships between the classes



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes

• methods attached to classes or generic functions (see
later), shared by instances

• attributes/slots/values defined in classes, attached to
instances (or shared within classes)

• single or multiple inheritance defined through the
relationships between the classes



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic functions (see

later), shared by instances

• attributes/slots/values defined in classes, attached to
instances (or shared within classes)

• single or multiple inheritance defined through the
relationships between the classes



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic functions (see

later), shared by instances
• attributes/slots/values defined in classes, attached to

instances (or shared within classes)

• single or multiple inheritance defined through the
relationships between the classes



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic functions (see

later), shared by instances
• attributes/slots/values defined in classes, attached to

instances (or shared within classes)
• single or multiple inheritance defined through the

relationships between the classes



Object Oriented Languages
Class Centred

And, of course, there are languages that don’t fit this simple
view

Exercise Ruby first looks for methods in the object; then the
class; then parent classes. Read about this



Object Oriented Languages
Class Centred

And, of course, there are languages that don’t fit this simple
view

Exercise Ruby first looks for methods in the object; then the
class; then parent classes. Read about this



Object Oriented Languages
Brief aside

There is a lot of variation on terminology that reflects the many
ways people think about OO

• For data: attribute, state, slot, member, value, element,
variant, structure

• For code: method, behaviour, action, message

Be aware of these variations!



Object Oriented Languages
Brief aside

There is a lot of variation on terminology that reflects the many
ways people think about OO

• For data: attribute, state, slot, member, value, element,
variant, structure

• For code: method, behaviour, action, message

Be aware of these variations!



Object Oriented Languages
Brief aside

There is a lot of variation on terminology that reflects the many
ways people think about OO

• For data: attribute, state, slot, member, value, element,
variant, structure

• For code: method, behaviour, action, message

Be aware of these variations!



Object Oriented Languages
Brief aside

There is a lot of variation on terminology that reflects the many
ways people think about OO

• For data: attribute, state, slot, member, value, element,
variant, structure

• For code: method, behaviour, action, message

Be aware of these variations!



Object Oriented Languages
Class Centred

OO languages are occasionally further divided by how they do
methods:

• object receiver: Java, C++, . . .
• generic functions: Lisp, . . .

The object receiver view of the world has a single object
receiving a message, such as x.plus(y), and chooses a
method depending on the type of a single object: x in this case

(We ignore the extra complications of overloading here)

This is the familiar “object dot method name” syntax



Object Oriented Languages
Class Centred

OO languages are occasionally further divided by how they do
methods:

• object receiver: Java, C++, . . .
• generic functions: Lisp, . . .

The object receiver view of the world has a single object
receiving a message, such as x.plus(y), and chooses a
method depending on the type of a single object: x in this case

(We ignore the extra complications of overloading here)

This is the familiar “object dot method name” syntax



Object Oriented Languages
Class Centred

OO languages are occasionally further divided by how they do
methods:

• object receiver: Java, C++, . . .
• generic functions: Lisp, . . .

The object receiver view of the world has a single object
receiving a message, such as x.plus(y), and chooses a
method depending on the type of a single object: x in this case

(We ignore the extra complications of overloading here)

This is the familiar “object dot method name” syntax



Object Oriented Languages
Class Centred

OO languages are occasionally further divided by how they do
methods:

• object receiver: Java, C++, . . .
• generic functions: Lisp, . . .

The object receiver view of the world has a single object
receiving a message, such as x.plus(y), and chooses a
method depending on the type of a single object: x in this case

(We ignore the extra complications of overloading here)

This is the familiar “object dot method name” syntax



Object Oriented Languages
Class Centred

On the other hand, generic functions look more like normal
functions: plus(x,y) or (plus x y), and they choose a
method depending on the types of both x and y

They are sometimes called multimethods



Object Oriented Languages
Class Centred

On the other hand, generic functions look more like normal
functions: plus(x,y) or (plus x y), and they choose a
method depending on the types of both x and y

They are sometimes called multimethods



Object Oriented Languages
Class Centred

Note this is syntactic convenience. We might write

(x,y).plus()

to emphasise the messaging, but it’s simpler to use the function
notation for the “multiple receiver” case: as long as you
remember it’s a method call, not a function call

Exercise Compare with pair types and, more generally, product
types



Object Oriented Languages
Class Centred

Note this is syntactic convenience. We might write

(x,y).plus()

to emphasise the messaging, but it’s simpler to use the function
notation for the “multiple receiver” case: as long as you
remember it’s a method call, not a function call

Exercise Compare with pair types and, more generally, product
types



Object Oriented Languages
Class Centred

In the multimethod case methods are now attached to attached
to generic functions (e.g., plus), rather than classes

The methods are to be found in the generic function “object”,
not a class

As there may be more than one class involved

For example, a multimethod wombat with methods defined on
(int, String) and (double, int) — which class would it be
defined on?

That doesn’t make sense, so we put them elsewhere, in the
generic function named wombat, and not worry about attaching
them to classes



Object Oriented Languages
Class Centred

In the multimethod case methods are now attached to attached
to generic functions (e.g., plus), rather than classes

The methods are to be found in the generic function “object”,
not a class

As there may be more than one class involved

For example, a multimethod wombat with methods defined on
(int, String) and (double, int) — which class would it be
defined on?

That doesn’t make sense, so we put them elsewhere, in the
generic function named wombat, and not worry about attaching
them to classes



Object Oriented Languages
Class Centred

In the multimethod case methods are now attached to attached
to generic functions (e.g., plus), rather than classes

The methods are to be found in the generic function “object”,
not a class

As there may be more than one class involved

For example, a multimethod wombat with methods defined on
(int, String) and (double, int) — which class would it be
defined on?

That doesn’t make sense, so we put them elsewhere, in the
generic function named wombat, and not worry about attaching
them to classes



Object Oriented Languages
Class Centred

In the multimethod case methods are now attached to attached
to generic functions (e.g., plus), rather than classes

The methods are to be found in the generic function “object”,
not a class

As there may be more than one class involved

For example, a multimethod wombat with methods defined on
(int, String) and (double, int) — which class would it be
defined on?

That doesn’t make sense, so we put them elsewhere, in the
generic function named wombat, and not worry about attaching
them to classes



Object Oriented Languages
Class Centred

In the multimethod case methods are now attached to attached
to generic functions (e.g., plus), rather than classes

The methods are to be found in the generic function “object”,
not a class

As there may be more than one class involved

For example, a multimethod wombat with methods defined on
(int, String) and (double, int) — which class would it be
defined on?

That doesn’t make sense, so we put them elsewhere, in the
generic function named wombat, and not worry about attaching
them to classes



Object Oriented Languages
Class Centred

And when defining new methods we will refer to the generic
function, not to a class or classes

Terminology: from Java or elsewhere you might be used to
saying “a method defined in a class” or “defined on a class” —
this is not appropriate for the generic function approach

A (multi)method can depend on multiple classes

Saying “method in a class” is OK for Java, not for Lisp



Object Oriented Languages
Class Centred

And when defining new methods we will refer to the generic
function, not to a class or classes

Terminology: from Java or elsewhere you might be used to
saying “a method defined in a class” or “defined on a class” —
this is not appropriate for the generic function approach

A (multi)method can depend on multiple classes

Saying “method in a class” is OK for Java, not for Lisp



Object Oriented Languages
Class Centred

And when defining new methods we will refer to the generic
function, not to a class or classes

Terminology: from Java or elsewhere you might be used to
saying “a method defined in a class” or “defined on a class” —
this is not appropriate for the generic function approach

A (multi)method can depend on multiple classes

Saying “method in a class” is OK for Java, not for Lisp



Object Oriented Languages
Class Centred

And when defining new methods we will refer to the generic
function, not to a class or classes

Terminology: from Java or elsewhere you might be used to
saying “a method defined in a class” or “defined on a class” —
this is not appropriate for the generic function approach

A (multi)method can depend on multiple classes

Saying “method in a class” is OK for Java, not for Lisp



Object Oriented Languages
Class Centred

Methods have two identifying things: their names and the
class(es) of the object(s) they are called on

Object receiver collects them by the (single) class

Generic functions collect them by the name

A choice of approach, but not symmetric, as a method only has
one name, but can depend on more than one class



Object Oriented Languages
Class Centred

Methods have two identifying things: their names and the
class(es) of the object(s) they are called on

Object receiver collects them by the (single) class

Generic functions collect them by the name

A choice of approach, but not symmetric, as a method only has
one name, but can depend on more than one class



Object Oriented Languages
Class Centred

Methods have two identifying things: their names and the
class(es) of the object(s) they are called on

Object receiver collects them by the (single) class

Generic functions collect them by the name

A choice of approach, but not symmetric, as a method only has
one name, but can depend on more than one class



Object Oriented Languages
Class Centred

Methods have two identifying things: their names and the
class(es) of the object(s) they are called on

Object receiver collects them by the (single) class

Generic functions collect them by the name

A choice of approach, but not symmetric, as a method only has
one name, but can depend on more than one class



Object Oriented Languages
Class Centred

Generic functions dispatch (choose a method) on the type of
one or more objects

So they are called multiple dispatch in contrast with (say) Java
that is single dispatch

In use, generic functions look a lot like normal functions, but are
actually collections of methods



Object Oriented Languages
Class Centred

Generic functions dispatch (choose a method) on the type of
one or more objects

So they are called multiple dispatch in contrast with (say) Java
that is single dispatch

In use, generic functions look a lot like normal functions, but are
actually collections of methods



Object Oriented Languages
Class Centred

Generic functions dispatch (choose a method) on the type of
one or more objects

So they are called multiple dispatch in contrast with (say) Java
that is single dispatch

In use, generic functions look a lot like normal functions, but are
actually collections of methods



Object Oriented Languages
Class Centred

(defgeneric foo (x y))

(defmethod foo ((x <number>) (y <number>)) ...)

(defmethod foo ((x <integer>) (y <integer>)) ...)

(defmethod foo ((x <number>) (y <float>)) ...)

(defmethod foo ((x <float>) (y <integer>)) ...)

...

Choosing the applicable method is more involved, but typically
is the closest match, taking arguments left-to-right to break ties
(more on this later)



Object Oriented Languages
Class Centred

(defgeneric foo (x y))

(defmethod foo ((x <number>) (y <number>)) ...)

(defmethod foo ((x <integer>) (y <integer>)) ...)

(defmethod foo ((x <number>) (y <float>)) ...)

(defmethod foo ((x <float>) (y <integer>)) ...)

...

Choosing the applicable method is more involved, but typically
is the closest match, taking arguments left-to-right to break ties
(more on this later)



General Remark

Methods, functions and generic functions are different things

Functions and methods are
different things

They both execute code, but they do it in very different ways



General Remark

Methods, functions and generic functions are different things

Functions and methods are
different things

They both execute code, but they do it in very different ways



General Remark

Methods, functions and generic functions are different things

Functions and methods are
different things

They both execute code, but they do it in very different ways



General Remark

Non-OO languages like C do not have methods, only
functions

Make sure you understand the difference between methods
and functions: calling a C function a “method” is a clear
indication that you don’t understand what you are talking about

They are not interchangeable words

You can’t use a function a like a method



General Remark

Non-OO languages like C do not have methods, only
functions

Make sure you understand the difference between methods
and functions: calling a C function a “method” is a clear
indication that you don’t understand what you are talking about

They are not interchangeable words

You can’t use a function a like a method



General Remark

Non-OO languages like C do not have methods, only
functions

Make sure you understand the difference between methods
and functions: calling a C function a “method” is a clear
indication that you don’t understand what you are talking about

They are not interchangeable words

You can’t use a function a like a method



General Remark

Non-OO languages like C do not have methods, only
functions

Make sure you understand the difference between methods
and functions: calling a C function a “method” is a clear
indication that you don’t understand what you are talking about

They are not interchangeable words

You can’t use a function a like a method



General Remark

A function is just some code

A method comprises the code plus other class-related things
needed to make OO work, in particular a reference to the object
in question; and more as we shall see shortly

A function describes behaviour; a method is behaviour plus
data

A generic function comprises zero or more methods

You may have also seen closures, which are different again



General Remark

A function is just some code

A method comprises the code plus other class-related things
needed to make OO work, in particular a reference to the object
in question; and more as we shall see shortly

A function describes behaviour; a method is behaviour plus
data

A generic function comprises zero or more methods

You may have also seen closures, which are different again



General Remark

A function is just some code

A method comprises the code plus other class-related things
needed to make OO work, in particular a reference to the object
in question; and more as we shall see shortly

A function describes behaviour; a method is behaviour plus
data

A generic function comprises zero or more methods

You may have also seen closures, which are different again



General Remark

A function is just some code

A method comprises the code plus other class-related things
needed to make OO work, in particular a reference to the object
in question; and more as we shall see shortly

A function describes behaviour; a method is behaviour plus
data

A generic function comprises zero or more methods

You may have also seen closures, which are different again



General Remark

A function is just some code

A method comprises the code plus other class-related things
needed to make OO work, in particular a reference to the object
in question; and more as we shall see shortly

A function describes behaviour; a method is behaviour plus
data

A generic function comprises zero or more methods

You may have also seen closures, which are different again



General Remark

• function: code
• method: code plus reference to the object
• generic function: collection of methods
• closure: code plus captured environment

Confusing these concepts will ensure loss of marks!



General Remark

• function: code
• method: code plus reference to the object
• generic function: collection of methods
• closure: code plus captured environment

Confusing these concepts will ensure loss of marks!



General Remark

Functions just have code and data (arguments)

arg arg

code

Function are code



General Remark

Methods have code, arguments, the object and often a next
method list

arg arg

code

object

method

next

(super)

code

arg argobject

Methods have code, the object and next methods



General Remark

Within the body of the code the object is often referred to as a
special argument named self or this; or it can be implicit,
such as referring to a slot as simply “x” rather than “this.x” or
“self.x”

In the case of an overridden method, the next most specific
applicable method is sometimes available to call by super or
call-next-method or similar

In an object receiver language, the next method would be a
method in a superclass of the class of the object

In a generic function it is more complicated



General Remark

Within the body of the code the object is often referred to as a
special argument named self or this; or it can be implicit,
such as referring to a slot as simply “x” rather than “this.x” or
“self.x”

In the case of an overridden method, the next most specific
applicable method is sometimes available to call by super or
call-next-method or similar

In an object receiver language, the next method would be a
method in a superclass of the class of the object

In a generic function it is more complicated



General Remark

Within the body of the code the object is often referred to as a
special argument named self or this; or it can be implicit,
such as referring to a slot as simply “x” rather than “this.x” or
“self.x”

In the case of an overridden method, the next most specific
applicable method is sometimes available to call by super or
call-next-method or similar

In an object receiver language, the next method would be a
method in a superclass of the class of the object

In a generic function it is more complicated



General Remark

Within the body of the code the object is often referred to as a
special argument named self or this; or it can be implicit,
such as referring to a slot as simply “x” rather than “this.x” or
“self.x”

In the case of an overridden method, the next most specific
applicable method is sometimes available to call by super or
call-next-method or similar

In an object receiver language, the next method would be a
method in a superclass of the class of the object

In a generic function it is more complicated



General Remark

arg arg

code

object arg arg

code

object arg arg

code

objectarg arg

code

object

function

generic

Generic functions are a collection of methods



Aside

For those interested in the mechanisms: a method call
obj.meth(x,y) is often compiled into the equivalent of a
normal function call with extra “hidden” arguments

meth_class_of_obj(obj, next_method_list, x, y)

and obj is accessible within the body of the function as the
function parameter this or self or similar

Any super methods are contained in the next method list

So this is more name mangling



Aside

For those interested in the mechanisms: a method call
obj.meth(x,y) is often compiled into the equivalent of a
normal function call with extra “hidden” arguments

meth_class_of_obj(obj, next_method_list, x, y)

and obj is accessible within the body of the function as the
function parameter this or self or similar

Any super methods are contained in the next method list

So this is more name mangling



Object Oriented Languages

Hint: if you write
x.foo()
it’s probably a method call

If you write
foo(x)
it’s probably a function or generic function call

But not always: some object-receiver languages allow you to
call a method with function syntax

More on this later, but we need to introduce the other kinds of
OO



Object Oriented Languages

Hint: if you write
x.foo()
it’s probably a method call

If you write
foo(x)
it’s probably a function or generic function call

But not always: some object-receiver languages allow you to
call a method with function syntax

More on this later, but we need to introduce the other kinds of
OO



Object Oriented Languages

Hint: if you write
x.foo()
it’s probably a method call

If you write
foo(x)
it’s probably a function or generic function call

But not always: some object-receiver languages allow you to
call a method with function syntax

More on this later, but we need to introduce the other kinds of
OO



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Lua, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects, i.e., stored in the object
• slots attached to objects
• direct construction and cloning to make instances
• no inheritance



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Lua, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects, i.e., stored in the object
• slots attached to objects
• direct construction and cloning to make instances
• no inheritance



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Lua, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects, i.e., stored in the object
• slots attached to objects
• direct construction and cloning to make instances
• no inheritance



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Lua, Self, . . .

Typified by

• objects only, no classes

• methods attached to objects, i.e., stored in the object
• slots attached to objects
• direct construction and cloning to make instances
• no inheritance



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Lua, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects, i.e., stored in the object

• slots attached to objects
• direct construction and cloning to make instances
• no inheritance



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Lua, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects, i.e., stored in the object
• slots attached to objects

• direct construction and cloning to make instances
• no inheritance



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Lua, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects, i.e., stored in the object
• slots attached to objects
• direct construction and cloning to make instances

• no inheritance



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Lua, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects, i.e., stored in the object
• slots attached to objects
• direct construction and cloning to make instances
• no inheritance



Object Oriented Languages
List Constructor in JavaScript

function list() {

this.size = 0

this.node = {next: 0, prev: 0, data: 0}

this.node.next = this.node

this.node.prev = this.node

this.push_back = function (x) {

var tmp = {next: this.node,

prev: this.node.prev,

data: x}

this.node.prev.next = tmp

this.node.prev = tmp

this.size += 1

return x

}

this.toString = list_toString

for (var i = 0; i < arguments.length; i++) {

this.push_back(arguments[i])

}

}



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item
• this.toString = list toString: another method with

code defined elsewhere
• for ...: more code to execute when making an object



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item
• this.toString = list toString: another method with

code defined elsewhere
• for ...: more code to execute when making an object



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item

• this.toString = list toString: another method with
code defined elsewhere

• for ...: more code to execute when making an object



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item
• this.toString = list toString: another method with

code defined elsewhere

• for ...: more code to execute when making an object



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item
• this.toString = list toString: another method with

code defined elsewhere
• for ...: more code to execute when making an object



Object Oriented Languages
List Constructor in JavaScript

This would be used like

var l = new list("hello", 1, "world");

l.push_back(2);

var len = l.size;

Note: no class definition, only how to make an object



Object Oriented Languages
List Constructor in JavaScript

This would be used like

var l = new list("hello", 1, "world");

l.push_back(2);

var len = l.size;

Note: no class definition, only how to make an object



Object Oriented Languages

Object centred languages are often dynamically typed, while
class centred languages are often statically typed

But these are separate concepts that should not be confused

Some class centred languages are dynamic, e.g., Common
Lisp can redefine its classes while it is running



Object Oriented Languages

Object centred languages are often dynamically typed, while
class centred languages are often statically typed

But these are separate concepts that should not be confused

Some class centred languages are dynamic, e.g., Common
Lisp can redefine its classes while it is running



Object Oriented Languages

Object centred languages are often dynamically typed, while
class centred languages are often statically typed

But these are separate concepts that should not be confused

Some class centred languages are dynamic, e.g., Common
Lisp can redefine its classes while it is running



Object Oriented Languages

Class centred OO could be thought of as

two kinds of object, two kinds of link

Namely classes and non-classes, inheritance and instance



Object Oriented Languages

Class centred OO could be thought of as

two kinds of object, two kinds of link

Namely classes and non-classes, inheritance and instance



Object Oriented Languages
Prototyping

Prototyping is then

one kind of object, no links

JavaScript is an example of a prototyping language

NB: don’t confuse this usage with languages that are used for
prototyping!



Object Oriented Languages
Prototyping

Prototyping is then

one kind of object, no links

JavaScript is an example of a prototyping language

NB: don’t confuse this usage with languages that are used for
prototyping!



Object Oriented Languages
Prototyping

Prototyping is then

one kind of object, no links

JavaScript is an example of a prototyping language

NB: don’t confuse this usage with languages that are used for
prototyping!



Object Oriented Languages
Prototyping

• creating a new object is done by direct construction or by
cloning, i.e., copying an existing object: the prototype

• an object contains its own attributes (slots) and behaviours
(methods)

• attribute and behaviour lookup are both by interrogating
the object

• no inheritance in the class-centred sense, but an object
can itself call other methods as it sees fit: an object could
contain an object of another type and treat that as its
“parent”, calling its methods explicitly



Object Oriented Languages
Prototyping

• creating a new object is done by direct construction or by
cloning, i.e., copying an existing object: the prototype

• an object contains its own attributes (slots) and behaviours
(methods)

• attribute and behaviour lookup are both by interrogating
the object

• no inheritance in the class-centred sense, but an object
can itself call other methods as it sees fit: an object could
contain an object of another type and treat that as its
“parent”, calling its methods explicitly



Object Oriented Languages
Prototyping

• creating a new object is done by direct construction or by
cloning, i.e., copying an existing object: the prototype

• an object contains its own attributes (slots) and behaviours
(methods)

• attribute and behaviour lookup are both by interrogating
the object

• no inheritance in the class-centred sense, but an object
can itself call other methods as it sees fit: an object could
contain an object of another type and treat that as its
“parent”, calling its methods explicitly



Object Oriented Languages
Prototyping

• creating a new object is done by direct construction or by
cloning, i.e., copying an existing object: the prototype

• an object contains its own attributes (slots) and behaviours
(methods)

• attribute and behaviour lookup are both by interrogating
the object

• no inheritance in the class-centred sense, but an object
can itself call other methods as it sees fit: an object could
contain an object of another type and treat that as its
“parent”, calling its methods explicitly



Object Oriented Languages
Prototyping

Though not a defining feature of prototyping, these languages
often allow dynamic addition of attributes and behaviours to
objects:

function obj() { this.one = 1; this.two = 2; }

var a = new obj(), b = new obj();

a.three = 3;

// b.three is undefined

• used in differential inheritance: clone an object then add a
new behaviour or modify an existing behaviour (or attribute)

• again, different from class-centred inheritance as the
cloned object contains all its own methods and attributes



Object Oriented Languages
Prototyping

Though not a defining feature of prototyping, these languages
often allow dynamic addition of attributes and behaviours to
objects:

function obj() { this.one = 1; this.two = 2; }

var a = new obj(), b = new obj();

a.three = 3;

// b.three is undefined

• used in differential inheritance: clone an object then add a
new behaviour or modify an existing behaviour (or attribute)

• again, different from class-centred inheritance as the
cloned object contains all its own methods and attributes



Object Oriented Languages
Prototyping

obj1 obj2

obj1 obj2

Class centred Object centred

f

g

f f

g

class A

class B

Class vs. object centred methods

In class-centred, obj2 gets f and g from its classes

In object centred, they are self-contained



Object Oriented Languages
Prototyping

• Prototyping gives less efficient code (requires runtime
lookups) but more flexible programming

• it was developed as real code is never as simple as a tidy
class hierarchy might provide: we might want some
behaviour of a parent (or parents) but not all their
behaviours. Prototyping allows us to gather together
whatever we need from wherever we want without
constraint



Object Oriented Languages
Prototyping

• Prototyping gives less efficient code (requires runtime
lookups) but more flexible programming

• it was developed as real code is never as simple as a tidy
class hierarchy might provide: we might want some
behaviour of a parent (or parents) but not all their
behaviours. Prototyping allows us to gather together
whatever we need from wherever we want without
constraint


