
Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your inherited behaviour)
at runtime!



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your inherited behaviour)
at runtime!



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your inherited behaviour)
at runtime!



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your inherited behaviour)
at runtime!



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your inherited behaviour)
at runtime!



Object Oriented Languages
Delegation

• creating a new object is done by direct construction or
cloning

• an object contains its own attributes, behaviours and a link
to a parent

• if there is an applicable method/attribute in the object, use
it, otherwise pass to the parent (but the parent is an object,
not a class)

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a contained parent object:
obj.parent.method()



Object Oriented Languages
Delegation

• creating a new object is done by direct construction or
cloning

• an object contains its own attributes, behaviours and a link
to a parent

• if there is an applicable method/attribute in the object, use
it, otherwise pass to the parent (but the parent is an object,
not a class)

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a contained parent object:
obj.parent.method()



Object Oriented Languages
Delegation

• creating a new object is done by direct construction or
cloning

• an object contains its own attributes, behaviours and a link
to a parent

• if there is an applicable method/attribute in the object, use
it, otherwise pass to the parent (but the parent is an object,
not a class)

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a contained parent object:
obj.parent.method()



Object Oriented Languages
Delegation

• creating a new object is done by direct construction or
cloning

• an object contains its own attributes, behaviours and a link
to a parent

• if there is an applicable method/attribute in the object, use
it, otherwise pass to the parent (but the parent is an object,
not a class)

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a contained parent object:
obj.parent.method()



Object Oriented Languages
Delegation

• creating a new object is done by direct construction or
cloning

• an object contains its own attributes, behaviours and a link
to a parent

• if there is an applicable method/attribute in the object, use
it, otherwise pass to the parent (but the parent is an object,
not a class)

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a contained parent object:
obj.parent.method()



Object Oriented Languages
Delegation

JavaScript supports delegation by means of a parent slot
named prototype (later versions: setPrototypeOf())

function base() { this.one = 1; }

function derived() { this.two = 2; }

var baseobj = new base();

derived.prototype = baseobj; // set parent pointer

var a = new derived(), b = new derived();

// a.one -> 1

baseobj.one = 99;

// a.one -> 99

// b.one -> 99

All the instances in this example share the same parent object
baseobj



Object Oriented Languages
Delegation

JavaScript is so dynamic as a language we can even

baseobj.three = 3;

// a.three -> 3

// b.three -> 3

So allowing global dynamic addition of behaviour: all this works
with both slots and methods; overriding works as expected

Exercise Compare with duck typing



Object Oriented Languages
Delegation

JavaScript is so dynamic as a language we can even

baseobj.three = 3;

// a.three -> 3

// b.three -> 3

So allowing global dynamic addition of behaviour: all this works
with both slots and methods; overriding works as expected

Exercise Compare with duck typing



Object Oriented Languages
Delegation

Exercise Later versions of JavaScript (ECMAScript 6) have
things called classes, but they are simply converted by the
compiler into prototypes and closures. Read about this



Object Oriented Languages
Traits

Next are traits: with variants called type classes or typeclasses,
roles, interfaces, mixins, or even concepts

The same basic idea has been reinvented several times, with
some variations in detail

Classically, traits have

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of thing called a trait
(often not an object in the OO sense)



Object Oriented Languages
Traits

Next are traits: with variants called type classes or typeclasses,
roles, interfaces, mixins, or even concepts

The same basic idea has been reinvented several times, with
some variations in detail

Classically, traits have

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of thing called a trait
(often not an object in the OO sense)



Object Oriented Languages
Traits

Next are traits: with variants called type classes or typeclasses,
roles, interfaces, mixins, or even concepts

The same basic idea has been reinvented several times, with
some variations in detail

Classically, traits have

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of thing called a trait
(often not an object in the OO sense)



Object Oriented Languages
Traits

Next are traits: with variants called type classes or typeclasses,
roles, interfaces, mixins, or even concepts

The same basic idea has been reinvented several times, with
some variations in detail

Classically, traits have

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of thing called a trait
(often not an object in the OO sense)



Object Oriented Languages
Traits

Next are traits: with variants called type classes or typeclasses,
roles, interfaces, mixins, or even concepts

The same basic idea has been reinvented several times, with
some variations in detail

Classically, traits have

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of thing called a trait
(often not an object in the OO sense)



Object Oriented Languages
Traits

Traits are not classes, but they do gather together and
encapsulate behaviours of objects: the methods are now not in
the object but have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy, which purely about object structure

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

Traits are normally associated with methods, though some
languages allow them to contain functions, too



Object Oriented Languages
Traits

Traits are not classes, but they do gather together and
encapsulate behaviours of objects: the methods are now not in
the object but have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy, which purely about object structure

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

Traits are normally associated with methods, though some
languages allow them to contain functions, too



Object Oriented Languages
Traits

Traits are not classes, but they do gather together and
encapsulate behaviours of objects: the methods are now not in
the object but have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy, which purely about object structure

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

Traits are normally associated with methods, though some
languages allow them to contain functions, too



Object Oriented Languages
Traits

Traits are not classes, but they do gather together and
encapsulate behaviours of objects: the methods are now not in
the object but have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy, which purely about object structure

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

Traits are normally associated with methods, though some
languages allow them to contain functions, too



Object Oriented Languages
Traits

eat()

sleep()

wag()

Cat trait

woof()

wag()

Dog trait

parent

Felix

Spot

Tom

Traits keep functions/methods separate

Tom wags like a dog, but sleeps like a cat



Object Oriented Languages
Traits

• an object contains its own attributes and references to a
trait (or traits) and (optionally) a link to a parent

• attribute lookup is via the object
• if there is an applicable behaviour in the trait, use it,

otherwise pass to the object’s parent and look in its trait
• creating a new object is done by direct construction or

cloning
• developed as this allows sharing of behaviour independent

of sharing of structure (a Dog and a Car could share a
move method)



Object Oriented Languages
Traits

• an object contains its own attributes and references to a
trait (or traits) and (optionally) a link to a parent

• attribute lookup is via the object

• if there is an applicable behaviour in the trait, use it,
otherwise pass to the object’s parent and look in its trait

• creating a new object is done by direct construction or
cloning

• developed as this allows sharing of behaviour independent
of sharing of structure (a Dog and a Car could share a
move method)



Object Oriented Languages
Traits

• an object contains its own attributes and references to a
trait (or traits) and (optionally) a link to a parent

• attribute lookup is via the object
• if there is an applicable behaviour in the trait, use it,

otherwise pass to the object’s parent and look in its trait

• creating a new object is done by direct construction or
cloning

• developed as this allows sharing of behaviour independent
of sharing of structure (a Dog and a Car could share a
move method)



Object Oriented Languages
Traits

• an object contains its own attributes and references to a
trait (or traits) and (optionally) a link to a parent

• attribute lookup is via the object
• if there is an applicable behaviour in the trait, use it,

otherwise pass to the object’s parent and look in its trait
• creating a new object is done by direct construction or

cloning

• developed as this allows sharing of behaviour independent
of sharing of structure (a Dog and a Car could share a
move method)



Object Oriented Languages
Traits

• an object contains its own attributes and references to a
trait (or traits) and (optionally) a link to a parent

• attribute lookup is via the object
• if there is an applicable behaviour in the trait, use it,

otherwise pass to the object’s parent and look in its trait
• creating a new object is done by direct construction or

cloning
• developed as this allows sharing of behaviour independent

of sharing of structure (a Dog and a Car could share a
move method)



Object Oriented Languages
Traits

Comparing classes and traits:

Classes: structure and behaviour tied together in things called
“classes”

Code reuse is by inheritance of classes: if you inherit a class
you get both structure and behaviour

Traits: structure and behaviour in separate places and can be
used independently

Behaviour is not tied to structure



Object Oriented Languages
Traits

Comparing classes and traits:

Classes: structure and behaviour tied together in things called
“classes”

Code reuse is by inheritance of classes: if you inherit a class
you get both structure and behaviour

Traits: structure and behaviour in separate places and can be
used independently

Behaviour is not tied to structure



Object Oriented Languages
Traits

Comparing classes and traits:

Classes: structure and behaviour tied together in things called
“classes”

Code reuse is by inheritance of classes: if you inherit a class
you get both structure and behaviour

Traits: structure and behaviour in separate places and can be
used independently

Behaviour is not tied to structure



Object Oriented Languages
Traits

Comparing classes and traits:

Classes: structure and behaviour tied together in things called
“classes”

Code reuse is by inheritance of classes: if you inherit a class
you get both structure and behaviour

Traits: structure and behaviour in separate places and can be
used independently

Behaviour is not tied to structure



Object Oriented Languages
Traits

Comparing classes and traits:

Classes: structure and behaviour tied together in things called
“classes”

Code reuse is by inheritance of classes: if you inherit a class
you get both structure and behaviour

Traits: structure and behaviour in separate places and can be
used independently

Behaviour is not tied to structure



Object Oriented Languages
Traits

Traits have recently had a resurgence in popularity

Though somewhat changed in their modern form

Thing like traits appear in Python (roles), Perl (roles), Ruby,
Rust, Java (interfaces), Swift (protocols), Go (interfaces),
Common Lisp (mixins), Ruby (mixins), Haskell (typeclasses)

Exercise A lot of these have traditional classes with inheritance
as well as trait-like things. Why have both?



Object Oriented Languages
Traits

Traits have recently had a resurgence in popularity

Though somewhat changed in their modern form

Thing like traits appear in Python (roles), Perl (roles), Ruby,
Rust, Java (interfaces), Swift (protocols), Go (interfaces),
Common Lisp (mixins), Ruby (mixins), Haskell (typeclasses)

Exercise A lot of these have traditional classes with inheritance
as well as trait-like things. Why have both?



Object Oriented Languages
Traits

Traits have recently had a resurgence in popularity

Though somewhat changed in their modern form

Thing like traits appear in Python (roles), Perl (roles), Ruby,
Rust, Java (interfaces), Swift (protocols), Go (interfaces),
Common Lisp (mixins), Ruby (mixins), Haskell (typeclasses)

Exercise A lot of these have traditional classes with inheritance
as well as trait-like things. Why have both?



Object Oriented Languages
Traits

Traits have recently had a resurgence in popularity

Though somewhat changed in their modern form

Thing like traits appear in Python (roles), Perl (roles), Ruby,
Rust, Java (interfaces), Swift (protocols), Go (interfaces),
Common Lisp (mixins), Ruby (mixins), Haskell (typeclasses)

Exercise A lot of these have traditional classes with inheritance
as well as trait-like things. Why have both?



Object Oriented Languages
Traits

A trait was originally just a collection of method declarations,
but the word came to mean a variety of things, sometimes
under different names

These days it often means just a collection of method
signatures, i.e., just the method names with the types of their
parameters and result, no actual code

Acting as a requirement that a type must implement for itself
the methods as described

But, regardless of approach, a type that implements a trait has
all the behaviour specified by that trait



Object Oriented Languages
Traits

A trait was originally just a collection of method declarations,
but the word came to mean a variety of things, sometimes
under different names

These days it often means just a collection of method
signatures, i.e., just the method names with the types of their
parameters and result, no actual code

Acting as a requirement that a type must implement for itself
the methods as described

But, regardless of approach, a type that implements a trait has
all the behaviour specified by that trait



Object Oriented Languages
Traits

A trait was originally just a collection of method declarations,
but the word came to mean a variety of things, sometimes
under different names

These days it often means just a collection of method
signatures, i.e., just the method names with the types of their
parameters and result, no actual code

Acting as a requirement that a type must implement for itself
the methods as described

But, regardless of approach, a type that implements a trait has
all the behaviour specified by that trait



Object Oriented Languages
Traits

A trait was originally just a collection of method declarations,
but the word came to mean a variety of things, sometimes
under different names

These days it often means just a collection of method
signatures, i.e., just the method names with the types of their
parameters and result, no actual code

Acting as a requirement that a type must implement for itself
the methods as described

But, regardless of approach, a type that implements a trait has
all the behaviour specified by that trait



Object Oriented Languages
Traits

Although some people reserve the word interface for a list of
signatures

interface Canid {

public void woof();

public void run(double speed);

}

class Dog extends Animal implements Canid {

...

}



Object Oriented Languages
Traits

Although some people reserve the word interface for a list of
signatures

interface Canid {

public void woof();

public void run(double speed);

}

class Dog extends Animal implements Canid {

...

}



Object Oriented Languages
Traits

Some languages (e.g., Java, Rust) allow the trait to include
code, too, to use as a default when a type does not want to
implement something itself

And an object can attach to more than one trait, e.g., having the
behaviours of both cats and dogs

Again, allowing use of behaviour from many places, not just a
parent of some sort



Object Oriented Languages
Traits

Some languages (e.g., Java, Rust) allow the trait to include
code, too, to use as a default when a type does not want to
implement something itself

And an object can attach to more than one trait, e.g., having the
behaviours of both cats and dogs

Again, allowing use of behaviour from many places, not just a
parent of some sort



Object Oriented Languages
Traits

Some languages (e.g., Java, Rust) allow the trait to include
code, too, to use as a default when a type does not want to
implement something itself

And an object can attach to more than one trait, e.g., having the
behaviours of both cats and dogs

Again, allowing use of behaviour from many places, not just a
parent of some sort



Object Oriented Languages
Traits

What about parent links in trait-based languages?

Not a defining features of traits: inheritance of structure is a
separate issue

Some languages have parents, some don’t, some have full
class-based inheritance

Traits are primarily about behaviour, not structure



Object Oriented Languages
Traits

What about parent links in trait-based languages?

Not a defining features of traits: inheritance of structure is a
separate issue

Some languages have parents, some don’t, some have full
class-based inheritance

Traits are primarily about behaviour, not structure



Object Oriented Languages
Traits

What about parent links in trait-based languages?

Not a defining features of traits: inheritance of structure is a
separate issue

Some languages have parents, some don’t, some have full
class-based inheritance

Traits are primarily about behaviour, not structure



Object Oriented Languages
Traits

What about parent links in trait-based languages?

Not a defining features of traits: inheritance of structure is a
separate issue

Some languages have parents, some don’t, some have full
class-based inheritance

Traits are primarily about behaviour, not structure



Object Oriented Languages
Traits

Exercise For C++ geeks. C++20 introduced concepts as a way
to constrain its templates. Read about this

Exercise Also read about Common Lisp and Ruby mixins

Exercise Rust uses traits extensively, with “multiple inheritance”
in the traits and no parent link in the instances. Read about this

Exercise Java also has “multiple inheritance” in its interfaces.
Read about this



Object Oriented Languages
Traits

Let’s summarise these different kinds of OO



Object Oriented Languages

methods

slots slots

methods

objects

parent

class

class

Class Centred (Object Receiver)



Object Oriented Languages

slots

methods methods

slots

objects

Prototyping



Object Oriented Languages

slots

methods methods

slots

objects

methods

slots

parent

Delegation



Object Oriented Languages

objects

parent

methods
slots

slots slots

trait

methods

Traits

One kind of link?



Object Oriented Languages

objects

parent

methods
slots

slots slots

trait

methods

Traits

One kind of link?



Object Oriented Languages

links

objects

1 2
0 prototyping
1 delegation trait
2 class centred



Object Oriented Languages
Method Dispatch

Back to the methods: we now look at how to pick the right
method to call

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”



Object Oriented Languages
Method Dispatch

Back to the methods: we now look at how to pick the right
method to call

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”



Object Oriented Languages
Method Dispatch

Back to the methods: we now look at how to pick the right
method to call

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”



Object Oriented Languages
Method Dispatch

Back to the methods: we now look at how to pick the right
method to call

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”



Object Oriented Languages
Method Dispatch

Back to the methods: we now look at how to pick the right
method to call

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”



Object Oriented Languages
Method Dispatch

In this context “applicable” means “of the given name” and
suitable parameters

So obj.foo(42) looks for methods with the name foo
associated with the class of obj that take an integer argument



Object Oriented Languages
Method Dispatch

In this context “applicable” means “of the given name” and
suitable parameters

So obj.foo(42) looks for methods with the name foo
associated with the class of obj that take an integer argument



Object Oriented Languages
Aside

In some languages, mostly those with static type hierarchies,
e.g., Java and C++, the method can be determined and chosen
at compile time as the class hierarchy is determined and fixed
at compile time

Meaning no lookup overhead at runtime: the method has
already been selected by the compiler and is directly called with
no more ado

Other languages, mostly those with dynamic types, e.g.,
JavaScript and Lisp, the method can only be chosen at runtime
as the class or object relationships may change during the
running of the program

A familiar trade-off of speed against flexibility



Object Oriented Languages
Aside

In some languages, mostly those with static type hierarchies,
e.g., Java and C++, the method can be determined and chosen
at compile time as the class hierarchy is determined and fixed
at compile time

Meaning no lookup overhead at runtime: the method has
already been selected by the compiler and is directly called with
no more ado

Other languages, mostly those with dynamic types, e.g.,
JavaScript and Lisp, the method can only be chosen at runtime
as the class or object relationships may change during the
running of the program

A familiar trade-off of speed against flexibility



Object Oriented Languages
Aside

In some languages, mostly those with static type hierarchies,
e.g., Java and C++, the method can be determined and chosen
at compile time as the class hierarchy is determined and fixed
at compile time

Meaning no lookup overhead at runtime: the method has
already been selected by the compiler and is directly called with
no more ado

Other languages, mostly those with dynamic types, e.g.,
JavaScript and Lisp, the method can only be chosen at runtime
as the class or object relationships may change during the
running of the program

A familiar trade-off of speed against flexibility



Object Oriented Languages
Aside

In some languages, mostly those with static type hierarchies,
e.g., Java and C++, the method can be determined and chosen
at compile time as the class hierarchy is determined and fixed
at compile time

Meaning no lookup overhead at runtime: the method has
already been selected by the compiler and is directly called with
no more ado

Other languages, mostly those with dynamic types, e.g.,
JavaScript and Lisp, the method can only be chosen at runtime
as the class or object relationships may change during the
running of the program

A familiar trade-off of speed against flexibility



Object Oriented Languages
Method Dispatch

If there are generic functions or multiple inheritance we have to
work a bit harder

Essentially we make a list of all the applicable methods from
the arguments’ classes and their superclasses, sort them into
some useful order, then use the first in the list

In principle easy, but a lot of detail in reality

We’ll touch on this again later



Object Oriented Languages
Method Dispatch

If there are generic functions or multiple inheritance we have to
work a bit harder

Essentially we make a list of all the applicable methods from
the arguments’ classes and their superclasses, sort them into
some useful order, then use the first in the list

In principle easy, but a lot of detail in reality

We’ll touch on this again later



Object Oriented Languages
Method Dispatch

If there are generic functions or multiple inheritance we have to
work a bit harder

Essentially we make a list of all the applicable methods from
the arguments’ classes and their superclasses, sort them into
some useful order, then use the first in the list

In principle easy, but a lot of detail in reality

We’ll touch on this again later



Object Oriented Languages
Method Dispatch

If there are generic functions or multiple inheritance we have to
work a bit harder

Essentially we make a list of all the applicable methods from
the arguments’ classes and their superclasses, sort them into
some useful order, then use the first in the list

In principle easy, but a lot of detail in reality

We’ll touch on this again later



Object Oriented Languages
Method Dispatch

But even statically typed OO languages can have an element of
dynamic behaviour

This is reminiscent of the static vs. dynamic behaviour of
languages, but applied just to how methods are chosen



Object Oriented Languages
Method Dispatch

But even statically typed OO languages can have an element of
dynamic behaviour

This is reminiscent of the static vs. dynamic behaviour of
languages, but applied just to how methods are chosen



Object Oriented Languages
Method Dispatch

Suppose we have a class Animal with subclass Dog, with a
method hastail on Animal returning some default value,
overridden (specialised) by hastail on Dog

If have code
Animal fido = new Dog(...);

...

...fido.hastail()...

what do we want to happen?



Object Oriented Languages
Method Dispatch

Suppose we have a class Animal with subclass Dog, with a
method hastail on Animal returning some default value,
overridden (specialised) by hastail on Dog

If have code
Animal fido = new Dog(...);

...

...fido.hastail()...

what do we want to happen?



Object Oriented Languages
Method Dispatch

Animal fido = new Dog(...);

...

...fido.hastail()...

A Dog is an Animal, so it’s OK for variable fido to have type
Animal

But which method do we want called?

The Animal method, as the variable fido has type Animal?

The Dog method, as the variable fido contains a value of type
Dog?



Object Oriented Languages
Method Dispatch

Animal fido = new Dog(...);

...

...fido.hastail()...

A Dog is an Animal, so it’s OK for variable fido to have type
Animal

But which method do we want called?

The Animal method, as the variable fido has type Animal?

The Dog method, as the variable fido contains a value of type
Dog?



Object Oriented Languages
Method Dispatch

Animal fido = new Dog(...);

...

...fido.hastail()...

A Dog is an Animal, so it’s OK for variable fido to have type
Animal

But which method do we want called?

The Animal method, as the variable fido has type Animal?

The Dog method, as the variable fido contains a value of type
Dog?



Object Oriented Languages
Method Dispatch

Animal fido = new Dog(...);

...

...fido.hastail()...

A Dog is an Animal, so it’s OK for variable fido to have type
Animal

But which method do we want called?

The Animal method, as the variable fido has type Animal?

The Dog method, as the variable fido contains a value of type
Dog?



Object Oriented Languages
Method Dispatch

It depends — in some applications we want the former, in other
applications we want the latter

In many applications the latter (use the type of the value), but
this is not always the case

The former is static dispatch, using the type of the variable

The latter is dynamic dispatch, using the type of the current
object contained in the variable

Note we could later set fido = new Cat(...), so the type of
the contained object can change, while still being an Animal,
and this might require a different hastail



Object Oriented Languages
Method Dispatch

It depends — in some applications we want the former, in other
applications we want the latter

In many applications the latter (use the type of the value), but
this is not always the case

The former is static dispatch, using the type of the variable

The latter is dynamic dispatch, using the type of the current
object contained in the variable

Note we could later set fido = new Cat(...), so the type of
the contained object can change, while still being an Animal,
and this might require a different hastail



Object Oriented Languages
Method Dispatch

It depends — in some applications we want the former, in other
applications we want the latter

In many applications the latter (use the type of the value), but
this is not always the case

The former is static dispatch, using the type of the variable

The latter is dynamic dispatch, using the type of the current
object contained in the variable

Note we could later set fido = new Cat(...), so the type of
the contained object can change, while still being an Animal,
and this might require a different hastail



Object Oriented Languages
Method Dispatch

It depends — in some applications we want the former, in other
applications we want the latter

In many applications the latter (use the type of the value), but
this is not always the case

The former is static dispatch, using the type of the variable

The latter is dynamic dispatch, using the type of the current
object contained in the variable

Note we could later set fido = new Cat(...), so the type of
the contained object can change, while still being an Animal,
and this might require a different hastail



Object Oriented Languages
Method Dispatch

It depends — in some applications we want the former, in other
applications we want the latter

In many applications the latter (use the type of the value), but
this is not always the case

The former is static dispatch, using the type of the variable

The latter is dynamic dispatch, using the type of the current
object contained in the variable

Note we could later set fido = new Cat(...), so the type of
the contained object can change, while still being an Animal,
and this might require a different hastail



Object Oriented Languages
Method Dispatch

Dynamic dispatch is sometimes also called:

• virtual method dispatch
• runtime dispatch
• late binding

Static dispatch is sometimes also called:

• early binding



Object Oriented Languages
Method Dispatch

A static method dispatch can be completely compiled away, as
in the a + b example when we were talking about dynamic and
static languages

A dynamic method dispatch will need the compiler to output
some code to pick a method at runtime — at each dynamic
method call in the code

Exercise Though in a static single-inheritance language this
dynamic lookup can be quite fast. Read about dispatch
tables/virtual method tables/vtables



Object Oriented Languages
Method Dispatch

A static method dispatch can be completely compiled away, as
in the a + b example when we were talking about dynamic and
static languages

A dynamic method dispatch will need the compiler to output
some code to pick a method at runtime — at each dynamic
method call in the code

Exercise Though in a static single-inheritance language this
dynamic lookup can be quite fast. Read about dispatch
tables/virtual method tables/vtables



Object Oriented Languages
Method Dispatch

A static method dispatch can be completely compiled away, as
in the a + b example when we were talking about dynamic and
static languages

A dynamic method dispatch will need the compiler to output
some code to pick a method at runtime — at each dynamic
method call in the code

Exercise Though in a static single-inheritance language this
dynamic lookup can be quite fast. Read about dispatch
tables/virtual method tables/vtables



Object Oriented Languages
Method Dispatch

As both kinds of dispatch are useful, many OO languages
support both and allow the programmer to specify which they
want

The programmer needs to be aware of the difference between
the two, and the costs involved!

Static fast, but less flexible; dynamic slower, but more flexible

Exercise Find out if and how your favourite OO languages
support this choice



Object Oriented Languages
Method Dispatch

As both kinds of dispatch are useful, many OO languages
support both and allow the programmer to specify which they
want

The programmer needs to be aware of the difference between
the two, and the costs involved!

Static fast, but less flexible; dynamic slower, but more flexible

Exercise Find out if and how your favourite OO languages
support this choice



Object Oriented Languages
Method Dispatch

As both kinds of dispatch are useful, many OO languages
support both and allow the programmer to specify which they
want

The programmer needs to be aware of the difference between
the two, and the costs involved!

Static fast, but less flexible; dynamic slower, but more flexible

Exercise Find out if and how your favourite OO languages
support this choice



Object Oriented Languages
Method Dispatch

As both kinds of dispatch are useful, many OO languages
support both and allow the programmer to specify which they
want

The programmer needs to be aware of the difference between
the two, and the costs involved!

Static fast, but less flexible; dynamic slower, but more flexible

Exercise Find out if and how your favourite OO languages
support this choice



Object Oriented Languages
Method Dispatch

Exercise Think about

Animal spot;

if (wombat() > 0) {

spot = new Cat();

}

else {

spot = new Dog();

}

... spot.hastail()...

where both Cat and Dog are subclasses of Animal



Object Oriented Languages
Method Composition

Next: we usually want more specific methods defined in a
subclass to override (aka specialise) less specific methods in
superclasses, but sometimes we want method composition

Suppose we have a Java class B that extends (is derived from;
is a subclass of) A

When making an instance of B, a constructor method for B does
not replace (override) the constructor method for A, but both are
called: first A’s then B’s



Object Oriented Languages
Method Composition

Next: we usually want more specific methods defined in a
subclass to override (aka specialise) less specific methods in
superclasses, but sometimes we want method composition

Suppose we have a Java class B that extends (is derived from;
is a subclass of) A

When making an instance of B, a constructor method for B does
not replace (override) the constructor method for A, but both are
called: first A’s then B’s



Object Oriented Languages
Method Composition

Next: we usually want more specific methods defined in a
subclass to override (aka specialise) less specific methods in
superclasses, but sometimes we want method composition

Suppose we have a Java class B that extends (is derived from;
is a subclass of) A

When making an instance of B, a constructor method for B does
not replace (override) the constructor method for A, but both are
called: first A’s then B’s



Object Oriented Languages
Method Composition

To make an instance of B it first runs the code for initialising an
A, then topping up with the code for initialising a B

In this case, a more specific method does not override a less
specific one, but is composed with it

Similarly C++ has destructors that get called when an object is
deleted, and they are called in the opposite order to the
constructor: B’s then A’s

In both these cases the composition is to run both methods, in
an appropriate order



Object Oriented Languages
Method Composition

To make an instance of B it first runs the code for initialising an
A, then topping up with the code for initialising a B

In this case, a more specific method does not override a less
specific one, but is composed with it

Similarly C++ has destructors that get called when an object is
deleted, and they are called in the opposite order to the
constructor: B’s then A’s

In both these cases the composition is to run both methods, in
an appropriate order



Object Oriented Languages
Method Composition

To make an instance of B it first runs the code for initialising an
A, then topping up with the code for initialising a B

In this case, a more specific method does not override a less
specific one, but is composed with it

Similarly C++ has destructors that get called when an object is
deleted, and they are called in the opposite order to the
constructor: B’s then A’s

In both these cases the composition is to run both methods, in
an appropriate order



Object Oriented Languages
Method Composition

To make an instance of B it first runs the code for initialising an
A, then topping up with the code for initialising a B

In this case, a more specific method does not override a less
specific one, but is composed with it

Similarly C++ has destructors that get called when an object is
deleted, and they are called in the opposite order to the
constructor: B’s then A’s

In both these cases the composition is to run both methods, in
an appropriate order



Object Oriented Languages
Method Composition

Exercise Java, Python and C# have destructors but call them
finalizers. Read about the problems the GC languages have
with destructors

Exercise Read about using the Resource Acquisition Is
Initialization (RAII) programming idiom to prevent resource
leaks


