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This is another big reason is why methods are different from
functions: with method composition, methods need to know
about other applicable methods, while functions live in isolation
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selection when we have multiple inheritance in the class
hierarchy

This applies to both single and multiple dispatch method calls

Take care here: MI is classes having multiple parents, while
multiple dispatch is choosing a method using multiple
arguments

Of course, we can have multiple dispatch with SI, and single
dispatch with MI, and multiple dispatch with MI
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than one parent

When you have more than one parent, how do you choose
which superclass to inherit from?

More generally: for method composition we need an order on
all the superclasses
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A

D

B.sleep() C.sleep()

Inheritance diamond

Suppose a method sleep is defined in both B and C, but not A

If sleep is called with argument in class A should it use the
method from B or C?

B, perhaps, as that is on the left, and we read left-to-right?

But other people read right-to-left, and what if we had
happened to draw the same hierarchy in a different way?
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Suppose a method sleep is defined in both B and C, but not A
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to D first; going up on the right we get to C first

Doing a breadth-first search, we find C first

What should A do?
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D::sleep()

While many languages have a built-in algorithm to choose for
you (see linearisation, below)



Object Oriented Languages
Multiple Inheritance

There have been many attempts to address this question

Every MI language needs a way of choosing, or forcing the
programmer to choose

Some languages force you to disambiguate yourself, e.g.,
D::sleep()

While many languages have a built-in algorithm to choose for
you (see linearisation, below)



Object Oriented Languages
Multiple Inheritance

There have been many attempts to address this question

Every MI language needs a way of choosing, or forcing the
programmer to choose

Some languages force you to disambiguate yourself, e.g.,
D::sleep()

While many languages have a built-in algorithm to choose for
you (see linearisation, below)



Object Oriented Languages
Multiple Inheritance

There have been many attempts to address this question

Every MI language needs a way of choosing, or forcing the
programmer to choose

Some languages force you to disambiguate yourself, e.g.,
D::sleep()

While many languages have a built-in algorithm to choose for
you (see linearisation, below)



Object Oriented Languages
Multiple Inheritance

But does this built-in algorithmic choice reflect the expectations
of the programmer?

Usually yes in simple cases, but what about more complex
hierarchies?

The fact there are many linearisation algorithms tells us
something!



Object Oriented Languages
Multiple Inheritance

But does this built-in algorithmic choice reflect the expectations
of the programmer?

Usually yes in simple cases, but what about more complex
hierarchies?

The fact there are many linearisation algorithms tells us
something!



Object Oriented Languages
Multiple Inheritance

But does this built-in algorithmic choice reflect the expectations
of the programmer?

Usually yes in simple cases, but what about more complex
hierarchies?

The fact there are many linearisation algorithms tells us
something!



Object Oriented Languages
Multiple Inheritance

For example, in simple cases, Common Lisp makes a choice by
looking at how the classes were defined
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(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (B C) ...)

it might order the diamond of superclasses of A as (A B C D).

This is a linearisation of the superclasses

And the resulting order (A B C D) is called the class
precedence list (CPL) for A

Thus — for this order — a method defined in B is preferred over
one defined in C

And similarly for B vs. D
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Common Lisp would create a CPL of (A C B D)

This makes the resolution of B versus C consistent with the
(perhaps unconscious) choice of the programmer

Remember this is a tiny example: in reality the code will be
much more complicated
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pick the right method and (b) have an ordered list of methods
for method composition
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Again, this is why we need the whole CPL, not just a single
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It’s not the whole story if we have multiple method dispatch as
we have extra complication over multiple argument classes

With object receiver, the MRO is just the CPL; with
multimethods calculating the MRO is harder (coming soon!)



Object Oriented Languages
Multiple Inheritance

Or methods if we have method composition

Again, this is why we need the whole CPL, not just a single
class

It’s not the whole story if we have multiple method dispatch as
we have extra complication over multiple argument classes

With object receiver, the MRO is just the CPL; with
multimethods calculating the MRO is harder (coming soon!)



Object Oriented Languages
Multiple Inheritance

Or methods if we have method composition

Again, this is why we need the whole CPL, not just a single
class

It’s not the whole story if we have multiple method dispatch as
we have extra complication over multiple argument classes

With object receiver, the MRO is just the CPL; with
multimethods calculating the MRO is harder (coming soon!)



Object Oriented Languages
Multiple Inheritance

Or methods if we have method composition

Again, this is why we need the whole CPL, not just a single
class

It’s not the whole story if we have multiple method dispatch as
we have extra complication over multiple argument classes

With object receiver, the MRO is just the CPL; with
multimethods calculating the MRO is harder (coming soon!)



Object Oriented Languages
Multiple Inheritance

Computing a good CPL is not straightforward: what about D
and E in

(defclass F () ...)

(defclass E (F) ...)

(defclass D (F) ...)

(defclass B (D) ...)

(defclass C (E) ...)

(defclass A (B C) ...)
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There is no disambiguating defclass to guide us to order D
and E

We might want D before E as B is before C

Or not

And do we want D before or after C?
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We have two dimensions: left-right and up-down, and different
people have different ideas (or different requirements) on which
should be used to resolve the order
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made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
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The same traversal becomes the CPL (A B D C E F)
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For example, if S has CPL with T before U, we might hope that a
subclass R of S also has a consistent CPL with T and U in the
same order

If the CPL for S is (S ... T ... U ...), the CPL for R would
be (R ... T ... U ...)

This would be a monotonic CPL: the CPL of a class is
consistent with the CPL of its parents
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But many linearisation algorithms don’t guarantee that: they
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Exercise Think about

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass BC (B C) ...)

(defclass CB (C B) ...)

(defclass A (BC CB) ...) A

D

B C

BC CB

A problematic MI graph
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Many languages have moved to a linearisation algorithm called
C3

It is fairly easy to implement and is monotonic

Together with a few other desirable properties

It is now used in Python, Perl and several other MI languages

Exercise Read about C3 linearization
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Some examples of “typical” MI hierarchies, from “A Monotonic
Superclass Linearization for Dylan”, Barrett et al., 1996:

classes MI joins
LispWorks 507 70
CLIM 842 184
database 38 4
emulator 571 205
proprietary 665 124
Watson 673 114



Feet

• Dylan: tries to shoot you in the foot like Scheme while
enviously watching Java eat its lunch
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We now know enough to talk about how to pick methods, that is,
determine the method resolution order (MRO) for multimethods

We need to find the right method to call given a bunch of
arguments

This needs various bits of infrastructure to work
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if it is defined for classes (A1,A2, . . . ,An) where for each i , the
class of ai is a subclass of Ai
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Here, int is a subclass of integer, and int is a subclass of
number

But not applicable to a call with arguments (4.0 99) as 4.0
has class double which is not a subclass of integer

Nor a call (4 "hello"), even though 4, with class int is a
subclass of integer, we see that string is not a subclass of
number
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Next, a method with domain (A1,A2, . . . ,An) is more specific
than a method with domain (B1,B2, . . . ,Bn) for the arguments
(a1,a2, . . . ,an) if

1. they are both applicable to (a1,a2, . . . ,an) and
2. there is an k with Ai = Bi for i < k , but
3. Ak appears before Bk in the CPL for argument ak
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In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one order in play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet
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CPL for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
int and double

The CPL for the first argument is (int integer number
object)

The CPL for the second argument is (double float number
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Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabetic order”, with the order being the
CPL for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
int and double

The CPL for the first argument is (int integer number
object)

The CPL for the second argument is (double float number
object)



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabetic order”, with the order being the
CPL for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
int and double

The CPL for the first argument is (int integer number
object)

The CPL for the second argument is (double float number
object)



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabetic order”, with the order being the
CPL for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
int and double

The CPL for the first argument is (int integer number
object)

The CPL for the second argument is (double float number
object)



Object Oriented Languages
Method Dispatch

A method with domain (integer float) is more specific than
one with domain (integer number)

A method with domain (int object) is more specific than
one with domain (integer double)

Just as “cup” is before “dog”: even though the second argument
is very late in the alphabet, the first argument prevails

A method with domain (float float) is not applicable for
those arguments unless the language allows automatic
coercion of types: a huge extra complication that we shall
ignore
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