
Object Oriented Languages
Method Composition

The level of support for method composition varies between
languages

• The super keyword in Smalltalk allows a method to call
the next most specific method

• call-next-method in Lisp and super() in Python are
similar
• many languages only have composition in constructors



Object Oriented Languages
Method Composition

The level of support for method composition varies between
languages

• The super keyword in Smalltalk allows a method to call
the next most specific method
• call-next-method in Lisp and super() in Python are

similar

• many languages only have composition in constructors



Object Oriented Languages
Method Composition

The level of support for method composition varies between
languages

• The super keyword in Smalltalk allows a method to call
the next most specific method
• call-next-method in Lisp and super() in Python are

similar
• many languages only have composition in constructors



Object Oriented Languages
Method Composition

• Common Lisp also has before, after and around
composition: they call it method combination. These add a
method to a generic function that runs before, or after, or
instead of the existing method

• You can use call-next-method to get at the original
method from an around method
• Some languages allow arbitrary user-defined method

composition: we shall talk about metaobject protocols soon



Object Oriented Languages
Method Composition

• Common Lisp also has before, after and around
composition: they call it method combination. These add a
method to a generic function that runs before, or after, or
instead of the existing method
• You can use call-next-method to get at the original

method from an around method

• Some languages allow arbitrary user-defined method
composition: we shall talk about metaobject protocols soon



Object Oriented Languages
Method Composition

• Common Lisp also has before, after and around
composition: they call it method combination. These add a
method to a generic function that runs before, or after, or
instead of the existing method
• You can use call-next-method to get at the original

method from an around method
• Some languages allow arbitrary user-defined method

composition: we shall talk about metaobject protocols soon



Object Oriented Languages
Method Composition

This is another big reason is why methods are different from
functions: with method composition, methods need to know
about other applicable methods, while functions live in isolation



Object Oriented Languages
Multiple Inheritance

Next there is another question to tackle: method (and attribute)
selection when we have multiple inheritance in the class
hierarchy

This applies to both single and multiple dispatch method calls

Take care here: MI is classes having multiple parents, while
multiple dispatch is choosing a method using multiple
arguments

Of course, we can have multiple dispatch with SI, and single
dispatch with MI, and multiple dispatch with MI



Object Oriented Languages
Multiple Inheritance

Next there is another question to tackle: method (and attribute)
selection when we have multiple inheritance in the class
hierarchy

This applies to both single and multiple dispatch method calls

Take care here: MI is classes having multiple parents, while
multiple dispatch is choosing a method using multiple
arguments

Of course, we can have multiple dispatch with SI, and single
dispatch with MI, and multiple dispatch with MI



Object Oriented Languages
Multiple Inheritance

Next there is another question to tackle: method (and attribute)
selection when we have multiple inheritance in the class
hierarchy

This applies to both single and multiple dispatch method calls

Take care here: MI is classes having multiple parents, while
multiple dispatch is choosing a method using multiple
arguments

Of course, we can have multiple dispatch with SI, and single
dispatch with MI, and multiple dispatch with MI



Object Oriented Languages
Multiple Inheritance

Next there is another question to tackle: method (and attribute)
selection when we have multiple inheritance in the class
hierarchy

This applies to both single and multiple dispatch method calls

Take care here: MI is classes having multiple parents, while
multiple dispatch is choosing a method using multiple
arguments

Of course, we can have multiple dispatch with SI, and single
dispatch with MI, and multiple dispatch with MI



Object Oriented Languages
Multiple Inheritance

In single inheritance with single dispatch the job is easy: if the
class of the current object has a method defined, use it; else
recurse to the parent class

But with MI you can inherit behaviour or structure from more
than one parent

When you have more than one parent, how do you choose
which superclass to inherit from?

More generally: for method composition we need an order on
all the superclasses



Object Oriented Languages
Multiple Inheritance

In single inheritance with single dispatch the job is easy: if the
class of the current object has a method defined, use it; else
recurse to the parent class

But with MI you can inherit behaviour or structure from more
than one parent

When you have more than one parent, how do you choose
which superclass to inherit from?

More generally: for method composition we need an order on
all the superclasses



Object Oriented Languages
Multiple Inheritance

In single inheritance with single dispatch the job is easy: if the
class of the current object has a method defined, use it; else
recurse to the parent class

But with MI you can inherit behaviour or structure from more
than one parent

When you have more than one parent, how do you choose
which superclass to inherit from?

More generally: for method composition we need an order on
all the superclasses



Object Oriented Languages
Multiple Inheritance

In single inheritance with single dispatch the job is easy: if the
class of the current object has a method defined, use it; else
recurse to the parent class

But with MI you can inherit behaviour or structure from more
than one parent

When you have more than one parent, how do you choose
which superclass to inherit from?

More generally: for method composition we need an order on
all the superclasses



Object Oriented Languages
Multiple Inheritance

A

D

B.sleep() C.sleep()

Inheritance diamond

Suppose a method sleep is defined in both B and C, but not A

If sleep is called with argument in class A should it use the
method from B or C?

B, perhaps, as that is on the left, and we read left-to-right?

But other people read right-to-left, and what if we had
happened to draw the same hierarchy in a different way?



Object Oriented Languages
Multiple Inheritance

A

D

B.sleep() C.sleep()

Inheritance diamond

Suppose a method sleep is defined in both B and C, but not A

If sleep is called with argument in class A should it use the
method from B or C?

B, perhaps, as that is on the left, and we read left-to-right?

But other people read right-to-left, and what if we had
happened to draw the same hierarchy in a different way?



Object Oriented Languages
Multiple Inheritance

A

D

B.sleep() C.sleep()

Inheritance diamond

Suppose a method sleep is defined in both B and C, but not A

If sleep is called with argument in class A should it use the
method from B or C?

B, perhaps, as that is on the left, and we read left-to-right?

But other people read right-to-left, and what if we had
happened to draw the same hierarchy in a different way?



Object Oriented Languages
Multiple Inheritance

A

D

B.sleep() C.sleep()

Inheritance diamond

Suppose a method sleep is defined in both B and C, but not A

If sleep is called with argument in class A should it use the
method from B or C?

B, perhaps, as that is on the left, and we read left-to-right?

But other people read right-to-left, and what if we had
happened to draw the same hierarchy in a different way?



Object Oriented Languages
Multiple Inheritance

A

D

C.sleep() B.sleep()

Inheritance diamond reversed

Suppose a method sleep is defined in both B and C, but not A

If sleep is called with argument in class A should it use the
method from B or C?

B, perhaps, as that is on the left, and we read left-to-right?

But other people read right-to-left, and what if we had
happened to draw the same hierarchy in a different way?



Object Oriented Languages
Multiple Inheritance

A

C.sleep()B

D.sleep()

Inheriting from different “levels”

Or suppose sleep is only defined in D and C

Going up the hierarchy in a depth-first search on the left we get
to D first; going up on the right we get to C first

Doing a breadth-first search, we find C first

What should A do?



Object Oriented Languages
Multiple Inheritance

A

C.sleep()B

D.sleep()

Inheriting from different “levels”

Or suppose sleep is only defined in D and C

Going up the hierarchy in a depth-first search on the left we get
to D first; going up on the right we get to C first

Doing a breadth-first search, we find C first

What should A do?



Object Oriented Languages
Multiple Inheritance

A

C.sleep()B

D.sleep()

Inheriting from different “levels”

Or suppose sleep is only defined in D and C

Going up the hierarchy in a depth-first search on the left we get
to D first; going up on the right we get to C first

Doing a breadth-first search, we find C first

What should A do?



Object Oriented Languages
Multiple Inheritance

A

C.sleep()B

D.sleep()

Inheriting from different “levels”

Or suppose sleep is only defined in D and C

Going up the hierarchy in a depth-first search on the left we get
to D first; going up on the right we get to C first

Doing a breadth-first search, we find C first

What should A do?



Object Oriented Languages
Multiple Inheritance

A

B

D

C

Inheritance diamond

This is called the diamond problem

When there is more than one candidate method to call, how
does the compiler (or interpreter) choose which one?

But, remember, the programmer also has to understand how a
method is chosen



Object Oriented Languages
Multiple Inheritance

A

B

D

C

Inheritance diamond

This is called the diamond problem

When there is more than one candidate method to call, how
does the compiler (or interpreter) choose which one?

But, remember, the programmer also has to understand how a
method is chosen



Object Oriented Languages
Multiple Inheritance

A

B

D

C

Inheritance diamond

This is called the diamond problem

When there is more than one candidate method to call, how
does the compiler (or interpreter) choose which one?

But, remember, the programmer also has to understand how a
method is chosen



Object Oriented Languages
Multiple Inheritance

There have been many attempts to address this question

Every MI language needs a way of choosing, or forcing the
programmer to choose

Some languages force you to disambiguate yourself, e.g.,
D::sleep()

While many languages have a built-in algorithm to choose for
you (see linearisation, below)



Object Oriented Languages
Multiple Inheritance

There have been many attempts to address this question

Every MI language needs a way of choosing, or forcing the
programmer to choose

Some languages force you to disambiguate yourself, e.g.,
D::sleep()

While many languages have a built-in algorithm to choose for
you (see linearisation, below)



Object Oriented Languages
Multiple Inheritance

There have been many attempts to address this question

Every MI language needs a way of choosing, or forcing the
programmer to choose

Some languages force you to disambiguate yourself, e.g.,
D::sleep()

While many languages have a built-in algorithm to choose for
you (see linearisation, below)



Object Oriented Languages
Multiple Inheritance

There have been many attempts to address this question

Every MI language needs a way of choosing, or forcing the
programmer to choose

Some languages force you to disambiguate yourself, e.g.,
D::sleep()

While many languages have a built-in algorithm to choose for
you (see linearisation, below)



Object Oriented Languages
Multiple Inheritance

But does this built-in algorithmic choice reflect the expectations
of the programmer?

Usually yes in simple cases, but what about more complex
hierarchies?

The fact there are many linearisation algorithms tells us
something!



Object Oriented Languages
Multiple Inheritance

But does this built-in algorithmic choice reflect the expectations
of the programmer?

Usually yes in simple cases, but what about more complex
hierarchies?

The fact there are many linearisation algorithms tells us
something!



Object Oriented Languages
Multiple Inheritance

But does this built-in algorithmic choice reflect the expectations
of the programmer?

Usually yes in simple cases, but what about more complex
hierarchies?

The fact there are many linearisation algorithms tells us
something!



Object Oriented Languages
Multiple Inheritance

For example, in simple cases, Common Lisp makes a choice by
looking at how the classes were defined



Object Oriented Languages
Multiple Inheritance

If the definition was

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (B C) ...)

it might order the diamond of superclasses of A as (A B C D).

This is a linearisation of the superclasses

And the resulting order (A B C D) is called the class
precedence list (CPL) for A

Thus — for this order — a method defined in B is preferred over
one defined in C

And similarly for B vs. D



Object Oriented Languages
Multiple Inheritance

If the definition was

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (B C) ...)

it might order the diamond of superclasses of A as (A B C D).

This is a linearisation of the superclasses

And the resulting order (A B C D) is called the class
precedence list (CPL) for A

Thus — for this order — a method defined in B is preferred over
one defined in C

And similarly for B vs. D



Object Oriented Languages
Multiple Inheritance

If the definition was

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (B C) ...)

it might order the diamond of superclasses of A as (A B C D).

This is a linearisation of the superclasses

And the resulting order (A B C D) is called the class
precedence list (CPL) for A

Thus — for this order — a method defined in B is preferred over
one defined in C

And similarly for B vs. D



Object Oriented Languages
Multiple Inheritance

If the definition was

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (B C) ...)

it might order the diamond of superclasses of A as (A B C D).

This is a linearisation of the superclasses

And the resulting order (A B C D) is called the class
precedence list (CPL) for A

Thus — for this order — a method defined in B is preferred over
one defined in C

And similarly for B vs. D



Object Oriented Languages
Multiple Inheritance

If the definition was

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (B C) ...)

it might order the diamond of superclasses of A as (A B C D).

This is a linearisation of the superclasses

And the resulting order (A B C D) is called the class
precedence list (CPL) for A

Thus — for this order — a method defined in B is preferred over
one defined in C

And similarly for B vs. D



Object Oriented Languages
Multiple Inheritance

On the other hand, if we happened to define

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (C B) ...)

Common Lisp would create a CPL of (A C B D)

This makes the resolution of B versus C consistent with the
(perhaps unconscious) choice of the programmer

Remember this is a tiny example: in reality the code will be
much more complicated



Object Oriented Languages
Multiple Inheritance

On the other hand, if we happened to define

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (C B) ...)

Common Lisp would create a CPL of (A C B D)

This makes the resolution of B versus C consistent with the
(perhaps unconscious) choice of the programmer

Remember this is a tiny example: in reality the code will be
much more complicated



Object Oriented Languages
Multiple Inheritance

On the other hand, if we happened to define

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (C B) ...)

Common Lisp would create a CPL of (A C B D)

This makes the resolution of B versus C consistent with the
(perhaps unconscious) choice of the programmer

Remember this is a tiny example: in reality the code will be
much more complicated



Object Oriented Languages
Multiple Inheritance

A class precedence list helps the language decide which
method to use

It will give us the method resolution order (MRO)

Namely the ordering of the applicable methods so we (a) can
pick the right method and (b) have an ordered list of methods
for method composition



Object Oriented Languages
Multiple Inheritance

A class precedence list helps the language decide which
method to use

It will give us the method resolution order (MRO)

Namely the ordering of the applicable methods so we (a) can
pick the right method and (b) have an ordered list of methods
for method composition



Object Oriented Languages
Multiple Inheritance

A class precedence list helps the language decide which
method to use

It will give us the method resolution order (MRO)

Namely the ordering of the applicable methods so we (a) can
pick the right method and (b) have an ordered list of methods
for method composition



Object Oriented Languages
Multiple Inheritance

In object-receiver languages, usually the method chosen is the
earliest found following the CPL

Thus if the CPL is (A B C D) and both B and C define sleep,
then pick the method from B

If just D and C define sleep, then pick the method from C



Object Oriented Languages
Multiple Inheritance

In object-receiver languages, usually the method chosen is the
earliest found following the CPL

Thus if the CPL is (A B C D) and both B and C define sleep,
then pick the method from B

If just D and C define sleep, then pick the method from C



Object Oriented Languages
Multiple Inheritance

In object-receiver languages, usually the method chosen is the
earliest found following the CPL

Thus if the CPL is (A B C D) and both B and C define sleep,
then pick the method from B

If just D and C define sleep, then pick the method from C



Object Oriented Languages
Multiple Inheritance

Or methods if we have method composition

Again, this is why we need the whole CPL, not just a single
class

It’s not the whole story if we have multiple method dispatch as
we have extra complication over multiple argument classes

With object receiver, the MRO is just the CPL; with
multimethods calculating the MRO is harder (coming soon!)



Object Oriented Languages
Multiple Inheritance

Or methods if we have method composition

Again, this is why we need the whole CPL, not just a single
class

It’s not the whole story if we have multiple method dispatch as
we have extra complication over multiple argument classes

With object receiver, the MRO is just the CPL; with
multimethods calculating the MRO is harder (coming soon!)



Object Oriented Languages
Multiple Inheritance

Or methods if we have method composition

Again, this is why we need the whole CPL, not just a single
class

It’s not the whole story if we have multiple method dispatch as
we have extra complication over multiple argument classes

With object receiver, the MRO is just the CPL; with
multimethods calculating the MRO is harder (coming soon!)



Object Oriented Languages
Multiple Inheritance

Or methods if we have method composition

Again, this is why we need the whole CPL, not just a single
class

It’s not the whole story if we have multiple method dispatch as
we have extra complication over multiple argument classes

With object receiver, the MRO is just the CPL; with
multimethods calculating the MRO is harder (coming soon!)



Object Oriented Languages
Multiple Inheritance

Computing a good CPL is not straightforward: what about D
and E in

(defclass F () ...)

(defclass E (F) ...)

(defclass D (F) ...)

(defclass B (D) ...)

(defclass C (E) ...)

(defclass A (B C) ...)



Object Oriented Languages

B C

A

F

ED

MI graph with no disambiguating definition

There is no disambiguating defclass to guide us to order D
and E

We might want D before E as B is before C

Or not

And do we want D before or after C?



Object Oriented Languages

B C

A

F

ED

MI graph with no disambiguating definition

There is no disambiguating defclass to guide us to order D
and E

We might want D before E as B is before C

Or not

And do we want D before or after C?



Object Oriented Languages

B C

A

F

ED

MI graph with no disambiguating definition

There is no disambiguating defclass to guide us to order D
and E

We might want D before E as B is before C

Or not

And do we want D before or after C?



Object Oriented Languages

B C

A

F

ED

MI graph with no disambiguating definition

There is no disambiguating defclass to guide us to order D
and E

We might want D before E as B is before C

Or not

And do we want D before or after C?



Object Oriented Languages

This is the basic problem with MI: it is not clear, and different
programmers may have different expectations of what should
happen

The class definitions do not help in this example, so we need a
little more help

We have two dimensions: left-right and up-down, and different
people have different ideas (or different requirements) on which
should be used to resolve the order



Object Oriented Languages

This is the basic problem with MI: it is not clear, and different
programmers may have different expectations of what should
happen

The class definitions do not help in this example, so we need a
little more help

We have two dimensions: left-right and up-down, and different
people have different ideas (or different requirements) on which
should be used to resolve the order



Object Oriented Languages

This is the basic problem with MI: it is not clear, and different
programmers may have different expectations of what should
happen

The class definitions do not help in this example, so we need a
little more help

We have two dimensions: left-right and up-down, and different
people have different ideas (or different requirements) on which
should be used to resolve the order



Object Oriented Languages
Multiple Inheritance

These ideas were first explored in Lisp, and different people
made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)



Object Oriented Languages
Multiple Inheritance

These ideas were first explored in Lisp, and different people
made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)



Object Oriented Languages
Multiple Inheritance

These ideas were first explored in Lisp, and different people
made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)



Object Oriented Languages
Multiple Inheritance

These ideas were first explored in Lisp, and different people
made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)



Object Oriented Languages
Multiple Inheritance

These ideas were first explored in Lisp, and different people
made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)



Object Oriented Languages
Multiple Inheritance

Neither are satisfactory algorithms

For example, FLAVORS has F before C in the CPL for A even
though C is a subclass of F

And both produce undesirable behaviour in complicated
hierarchies



Object Oriented Languages
Multiple Inheritance

Neither are satisfactory algorithms

For example, FLAVORS has F before C in the CPL for A even
though C is a subclass of F

And both produce undesirable behaviour in complicated
hierarchies



Object Oriented Languages
Multiple Inheritance

Neither are satisfactory algorithms

For example, FLAVORS has F before C in the CPL for A even
though C is a subclass of F

And both produce undesirable behaviour in complicated
hierarchies



Object Oriented Languages
Multiple Inheritance

For example, if S has CPL with T before U, we might hope that a
subclass R of S also has a consistent CPL with T and U in the
same order

If the CPL for S is (S ... T ... U ...), the CPL for R would
be (R ... T ... U ...)

This would be a monotonic CPL: the CPL of a class is
consistent with the CPL of its parents



Object Oriented Languages
Multiple Inheritance

For example, if S has CPL with T before U, we might hope that a
subclass R of S also has a consistent CPL with T and U in the
same order

If the CPL for S is (S ... T ... U ...), the CPL for R would
be (R ... T ... U ...)

This would be a monotonic CPL: the CPL of a class is
consistent with the CPL of its parents



Object Oriented Languages
Multiple Inheritance

For example, if S has CPL with T before U, we might hope that a
subclass R of S also has a consistent CPL with T and U in the
same order

If the CPL for S is (S ... T ... U ...), the CPL for R would
be (R ... T ... U ...)

This would be a monotonic CPL: the CPL of a class is
consistent with the CPL of its parents



Object Oriented Languages
Multiple Inheritance

Being monotonic is a desirable property as it agrees with
intuition of the programmer on how inheritance should happen

But many linearisation algorithms don’t guarantee that: they
might give non-monotonic CPLs



Object Oriented Languages
Multiple Inheritance

Being monotonic is a desirable property as it agrees with
intuition of the programmer on how inheritance should happen

But many linearisation algorithms don’t guarantee that: they
might give non-monotonic CPLs



Object Oriented Languages
Multiple Inheritance

All of LOOPS, FLAVORS and the more complex algorithm
actually used by Common Lisp can produce non-monotonic
CPLs, even on quite small examples

Exercise Look up the CLOS algorithm and find some
non-monotonic examples



Object Oriented Languages
Multiple Inheritance

All of LOOPS, FLAVORS and the more complex algorithm
actually used by Common Lisp can produce non-monotonic
CPLs, even on quite small examples

Exercise Look up the CLOS algorithm and find some
non-monotonic examples



Object Oriented Languages
Multiple Inheritance

Exercise Think about

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass BC (B C) ...)

(defclass CB (C B) ...)

(defclass A (BC CB) ...) A

D

B C

BC CB

A problematic MI graph



Object Oriented Languages
Multiple Inheritance

Many languages have moved to a linearisation algorithm called
C3

It is fairly easy to implement and is monotonic

Together with a few other desirable properties

It is now used in Python, Perl and several other MI languages

Exercise Read about C3 linearization



Object Oriented Languages
Multiple Inheritance

Many languages have moved to a linearisation algorithm called
C3

It is fairly easy to implement and is monotonic

Together with a few other desirable properties

It is now used in Python, Perl and several other MI languages

Exercise Read about C3 linearization



Object Oriented Languages
Multiple Inheritance

Many languages have moved to a linearisation algorithm called
C3

It is fairly easy to implement and is monotonic

Together with a few other desirable properties

It is now used in Python, Perl and several other MI languages

Exercise Read about C3 linearization



Object Oriented Languages
Multiple Inheritance

Many languages have moved to a linearisation algorithm called
C3

It is fairly easy to implement and is monotonic

Together with a few other desirable properties

It is now used in Python, Perl and several other MI languages

Exercise Read about C3 linearization



Object Oriented Languages
Multiple Inheritance

Many languages have moved to a linearisation algorithm called
C3

It is fairly easy to implement and is monotonic

Together with a few other desirable properties

It is now used in Python, Perl and several other MI languages

Exercise Read about C3 linearization



Object Oriented Languages
Multiple Inheritance

Some examples of “typical” MI hierarchies, from “A Monotonic
Superclass Linearization for Dylan”, Barrett et al., 1996:

classes MI joins
LispWorks 507 70
CLIM 842 184
database 38 4
emulator 571 205
proprietary 665 124
Watson 673 114



Feet

• Dylan: tries to shoot you in the foot like Scheme while
enviously watching Java eat its lunch



Object Oriented Languages
Method Dispatch

We now know enough to talk about how to pick methods, that is,
determine the method resolution order (MRO) for multimethods

We need to find the right method to call given a bunch of
arguments

This needs various bits of infrastructure to work



Object Oriented Languages
Method Dispatch

We now know enough to talk about how to pick methods, that is,
determine the method resolution order (MRO) for multimethods

We need to find the right method to call given a bunch of
arguments

This needs various bits of infrastructure to work



Object Oriented Languages
Method Dispatch

We now know enough to talk about how to pick methods, that is,
determine the method resolution order (MRO) for multimethods

We need to find the right method to call given a bunch of
arguments

This needs various bits of infrastructure to work



Object Oriented Languages
Method Dispatch

We need to know all the superclasses of the classes of the
objects involved, thus we need to compute their CPLs using
your favourite linearisation algorithm

For example, the arguments (4.0 99)

The argument of 4.0 might have CPL
(double float number object)

While the argument of 99 might have CPL
(int integer number object)



Object Oriented Languages
Method Dispatch

We need to know all the superclasses of the classes of the
objects involved, thus we need to compute their CPLs using
your favourite linearisation algorithm

For example, the arguments (4.0 99)

The argument of 4.0 might have CPL
(double float number object)

While the argument of 99 might have CPL
(int integer number object)



Object Oriented Languages
Method Dispatch

We need to know all the superclasses of the classes of the
objects involved, thus we need to compute their CPLs using
your favourite linearisation algorithm

For example, the arguments (4.0 99)

The argument of 4.0 might have CPL
(double float number object)

While the argument of 99 might have CPL
(int integer number object)



Object Oriented Languages
Method Dispatch

We need to know all the superclasses of the classes of the
objects involved, thus we need to compute their CPLs using
your favourite linearisation algorithm

For example, the arguments (4.0 99)

The argument of 4.0 might have CPL
(double float number object)

While the argument of 99 might have CPL
(int integer number object)



Object Oriented Languages
Method Dispatch

If we call a generic function on arguments (a1,a2, . . . ,an) we
first need to find those methods on the GF that it makes sense
to consider

A method is applicable to a call with arguments (a1,a2, . . . ,an)
if it is defined for classes (A1,A2, . . . ,An) where for each i , the
class of ai is a subclass of Ai



Object Oriented Languages
Method Dispatch

If we call a generic function on arguments (a1,a2, . . . ,an) we
first need to find those methods on the GF that it makes sense
to consider

A method is applicable to a call with arguments (a1,a2, . . . ,an)
if it is defined for classes (A1,A2, . . . ,An) where for each i , the
class of ai is a subclass of Ai



Object Oriented Languages
Method Dispatch

So a method with domain (integer number) is applicable to
a call with arguments (23 42) as these arguments have
classes (int int)

Here, int is a subclass of integer, and int is a subclass of
number

But not applicable to a call with arguments (4.0 99) as 4.0
has class double which is not a subclass of integer

Nor a call (4 "hello"), even though 4, with class int is a
subclass of integer, we see that string is not a subclass of
number



Object Oriented Languages
Method Dispatch

So a method with domain (integer number) is applicable to
a call with arguments (23 42) as these arguments have
classes (int int)

Here, int is a subclass of integer, and int is a subclass of
number

But not applicable to a call with arguments (4.0 99) as 4.0
has class double which is not a subclass of integer

Nor a call (4 "hello"), even though 4, with class int is a
subclass of integer, we see that string is not a subclass of
number



Object Oriented Languages
Method Dispatch

So a method with domain (integer number) is applicable to
a call with arguments (23 42) as these arguments have
classes (int int)

Here, int is a subclass of integer, and int is a subclass of
number

But not applicable to a call with arguments (4.0 99) as 4.0
has class double which is not a subclass of integer

Nor a call (4 "hello"), even though 4, with class int is a
subclass of integer, we see that string is not a subclass of
number



Object Oriented Languages
Method Dispatch

So a method with domain (integer number) is applicable to
a call with arguments (23 42) as these arguments have
classes (int int)

Here, int is a subclass of integer, and int is a subclass of
number

But not applicable to a call with arguments (4.0 99) as 4.0
has class double which is not a subclass of integer

Nor a call (4 "hello"), even though 4, with class int is a
subclass of integer, we see that string is not a subclass of
number



Object Oriented Languages
Method Dispatch

Next, a method with domain (A1,A2, . . . ,An) is more specific
than a method with domain (B1,B2, . . . ,Bn) for the arguments
(a1,a2, . . . ,an) if

1. they are both applicable to (a1,a2, . . . ,an) and
2. there is an k with Ai = Bi for i < k , but
3. Ak appears before Bk in the CPL for argument ak



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one order in play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one order in play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one order in play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one order in play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one order in play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabetic order”, with the order being the
CPL for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
int and double

The CPL for the first argument is (int integer number
object)

The CPL for the second argument is (double float number
object)



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabetic order”, with the order being the
CPL for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
int and double

The CPL for the first argument is (int integer number
object)

The CPL for the second argument is (double float number
object)



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabetic order”, with the order being the
CPL for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
int and double

The CPL for the first argument is (int integer number
object)

The CPL for the second argument is (double float number
object)



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabetic order”, with the order being the
CPL for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
int and double

The CPL for the first argument is (int integer number
object)

The CPL for the second argument is (double float number
object)



Object Oriented Languages
Method Dispatch

A method with domain (integer float) is more specific than
one with domain (integer number)

A method with domain (int object) is more specific than
one with domain (integer double)

Just as “cup” is before “dog”: even though the second argument
is very late in the alphabet, the first argument prevails

A method with domain (float float) is not applicable for
those arguments unless the language allows automatic
coercion of types: a huge extra complication that we shall
ignore



Object Oriented Languages
Method Dispatch

A method with domain (integer float) is more specific than
one with domain (integer number)

A method with domain (int object) is more specific than
one with domain (integer double)

Just as “cup” is before “dog”: even though the second argument
is very late in the alphabet, the first argument prevails

A method with domain (float float) is not applicable for
those arguments unless the language allows automatic
coercion of types: a huge extra complication that we shall
ignore



Object Oriented Languages
Method Dispatch

A method with domain (integer float) is more specific than
one with domain (integer number)

A method with domain (int object) is more specific than
one with domain (integer double)

Just as “cup” is before “dog”: even though the second argument
is very late in the alphabet, the first argument prevails

A method with domain (float float) is not applicable for
those arguments unless the language allows automatic
coercion of types: a huge extra complication that we shall
ignore



Object Oriented Languages
Method Dispatch

A method with domain (integer float) is more specific than
one with domain (integer number)

A method with domain (int object) is more specific than
one with domain (integer double)

Just as “cup” is before “dog”: even though the second argument
is very late in the alphabet, the first argument prevails

A method with domain (float float) is not applicable for
those arguments unless the language allows automatic
coercion of types: a huge extra complication that we shall
ignore


