
Object Oriented Languages
Method Dispatch

So (at last!) the way to choose a method for a given set of
arguments is

1. find the CPLs for each argument
2. find all the applicable methods
3. sort the applicable methods in decreasing order of

specificity according to the CPLs of the arguments
4. take the first (most specific) in the list

The sorted method list is useful for later when we want to be
more inventive on using methods, such as method composition



Object Oriented Languages
Method Dispatch

So (at last!) the way to choose a method for a given set of
arguments is

1. find the CPLs for each argument
2. find all the applicable methods
3. sort the applicable methods in decreasing order of

specificity according to the CPLs of the arguments
4. take the first (most specific) in the list

The sorted method list is useful for later when we want to be
more inventive on using methods, such as method composition



Object Oriented Languages
Method Dispatch

Note this algorithm reduces to what we expect in the SI,
single-dispatch case

Exercise Check this!



Object Oriented Languages
Method Dispatch

Note this algorithm reduces to what we expect in the SI,
single-dispatch case

Exercise Check this!



Object Oriented Languages
Method Dispatch

Exercise Given

(defgeneric foo (x y))

(defmethod foo ((x <number>) (y <number>)) 1)

(defmethod foo ((x <integer>) (y <integer>)) 2)

(defmethod foo ((x <number>) (y <float>)) 3)

(defmethod foo ((x <float>) (y <integer>)) 4)

work through the above algorithm to determine which method
gets called on various arguments, such as (foo 7 11), (foo
7.0 11), (foo 7.0 11.0), and so on.



Object Oriented Languages
Method Dispatch

This rather complex dispatch calculation will be done for every
method call in your code

Either at compile time (for a fixed class hierarchy), meaning no
run-time overhead

Or at run-time, meaning some considerable execution overhead

. . . unless clever tricks are employed, e.g., caching

For example, a lot of effort has been put into JavaScript on
precisely this point (and JavaScript is single dispatch!)



Object Oriented Languages
Method Dispatch

This rather complex dispatch calculation will be done for every
method call in your code

Either at compile time (for a fixed class hierarchy), meaning no
run-time overhead

Or at run-time, meaning some considerable execution overhead

. . . unless clever tricks are employed, e.g., caching

For example, a lot of effort has been put into JavaScript on
precisely this point (and JavaScript is single dispatch!)



Object Oriented Languages
Method Dispatch

This rather complex dispatch calculation will be done for every
method call in your code

Either at compile time (for a fixed class hierarchy), meaning no
run-time overhead

Or at run-time, meaning some considerable execution overhead

. . . unless clever tricks are employed, e.g., caching

For example, a lot of effort has been put into JavaScript on
precisely this point (and JavaScript is single dispatch!)



Object Oriented Languages
Method Dispatch

This rather complex dispatch calculation will be done for every
method call in your code

Either at compile time (for a fixed class hierarchy), meaning no
run-time overhead

Or at run-time, meaning some considerable execution overhead

. . . unless clever tricks are employed, e.g., caching

For example, a lot of effort has been put into JavaScript on
precisely this point (and JavaScript is single dispatch!)



Object Oriented Languages
Method Dispatch

This rather complex dispatch calculation will be done for every
method call in your code

Either at compile time (for a fixed class hierarchy), meaning no
run-time overhead

Or at run-time, meaning some considerable execution overhead

. . . unless clever tricks are employed, e.g., caching

For example, a lot of effort has been put into JavaScript on
precisely this point (and JavaScript is single dispatch!)



Object Oriented Languages
Multiple Inheritance

More on the question of multiple inheritance: languages have
variations on MI. In C++

class D { ... }

class B: public D { ... }

class C: public D { ... }

class A: public B, public C { ... }

has the additional peculiarity that class A is defined to inherit
two copies of D, one via B and one via C

This is because occasionally we want two copies

For example, an IOstream inherits from both Istream and
Ostream, which both inherit from Stream: we might want
separate file pointers for input and output



Object Oriented Languages
Multiple Inheritance

More on the question of multiple inheritance: languages have
variations on MI. In C++

class D { ... }

class B: public D { ... }

class C: public D { ... }

class A: public B, public C { ... }

has the additional peculiarity that class A is defined to inherit
two copies of D, one via B and one via C

This is because occasionally we want two copies

For example, an IOstream inherits from both Istream and
Ostream, which both inherit from Stream: we might want
separate file pointers for input and output



Object Oriented Languages
Multiple Inheritance

More on the question of multiple inheritance: languages have
variations on MI. In C++

class D { ... }

class B: public D { ... }

class C: public D { ... }

class A: public B, public C { ... }

has the additional peculiarity that class A is defined to inherit
two copies of D, one via B and one via C

This is because occasionally we want two copies

For example, an IOstream inherits from both Istream and
Ostream, which both inherit from Stream: we might want
separate file pointers for input and output



Object Oriented Languages
Multiple Inheritance

If we want only a single copy, C++ requires what it calls virtual
inheritance

class B: public virtual D { ... }

class C: public virtual D { ... }

class A: public B, public C { ... }

Now the single copy of D is inherited by A

This is the most common usage, so should have been the
default!



Object Oriented Languages
Multiple Inheritance

If we want only a single copy, C++ requires what it calls virtual
inheritance

class B: public virtual D { ... }

class C: public virtual D { ... }

class A: public B, public C { ... }

Now the single copy of D is inherited by A

This is the most common usage, so should have been the
default!



Object Oriented Languages
Multiple Inheritance

If we want only a single copy, C++ requires what it calls virtual
inheritance

class B: public virtual D { ... }

class C: public virtual D { ... }

class A: public B, public C { ... }

Now the single copy of D is inherited by A

This is the most common usage, so should have been the
default!



Object Oriented Languages
Multiple Inheritance

Exercise Find out how C++ addresses the diamond problem

Exercise Find out how Eiffel addresses the diamond problem



Object Oriented Languages
Multiple Inheritance

Java is one of several languages that avoid the complexities of
MI not having it

Instead, it supports interfaces

As discussed in traits, this often just a list of method signatures,
i.e., no code to go with the names



Object Oriented Languages
Multiple Inheritance

Java is one of several languages that avoid the complexities of
MI not having it

Instead, it supports interfaces

As discussed in traits, this often just a list of method signatures,
i.e., no code to go with the names



Object Oriented Languages
Multiple Inheritance

Java is one of several languages that avoid the complexities of
MI not having it

Instead, it supports interfaces

As discussed in traits, this often just a list of method signatures,
i.e., no code to go with the names



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement — directly or inherited
from (the single parent) Stream — all the methods mentioned
in the definitions of interfaces Istream and Ostream



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement — directly or inherited
from (the single parent) Stream — all the methods mentioned
in the definitions of interfaces Istream and Ostream



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement — directly or inherited
from (the single parent) Stream — all the methods mentioned
in the definitions of interfaces Istream and Ostream



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement — directly or inherited
from (the single parent) Stream — all the methods mentioned
in the definitions of interfaces Istream and Ostream



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement — directly or inherited
from (the single parent) Stream — all the methods mentioned
in the definitions of interfaces Istream and Ostream



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream will possibly implement read,
write and inherit get file position

In Java, a class can derive from multiple interfaces, but not
multiple classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name and signature

Exercise What happens if you derive from two interfaces and
they ask for different signatures for the same method name?



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream will possibly implement read,
write and inherit get file position

In Java, a class can derive from multiple interfaces, but not
multiple classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name and signature

Exercise What happens if you derive from two interfaces and
they ask for different signatures for the same method name?



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream will possibly implement read,
write and inherit get file position

In Java, a class can derive from multiple interfaces, but not
multiple classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name and signature

Exercise What happens if you derive from two interfaces and
they ask for different signatures for the same method name?



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream will possibly implement read,
write and inherit get file position

In Java, a class can derive from multiple interfaces, but not
multiple classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name and signature

Exercise What happens if you derive from two interfaces and
they ask for different signatures for the same method name?



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream will possibly implement read,
write and inherit get file position

In Java, a class can derive from multiple interfaces, but not
multiple classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name and signature

Exercise What happens if you derive from two interfaces and
they ask for different signatures for the same method name?



Object Oriented Languages
Multiple Inheritance

An interface like this is more like a list of requirements for a
class than about inheriting things

But interfaces provide all of the MI functionality that most
people need: they describe the required behaviour of a class,
taking from multiple places

Without all the complexity of MI forcing some variety of
inheritance on your code

Exercise Later standards for Java allows default methods to be
defined in interfaces, thus re-introducing the diamond problem.
Find out how Java addresses this



Object Oriented Languages
Multiple Inheritance

An interface like this is more like a list of requirements for a
class than about inheriting things

But interfaces provide all of the MI functionality that most
people need: they describe the required behaviour of a class,
taking from multiple places

Without all the complexity of MI forcing some variety of
inheritance on your code

Exercise Later standards for Java allows default methods to be
defined in interfaces, thus re-introducing the diamond problem.
Find out how Java addresses this



Object Oriented Languages
Multiple Inheritance

An interface like this is more like a list of requirements for a
class than about inheriting things

But interfaces provide all of the MI functionality that most
people need: they describe the required behaviour of a class,
taking from multiple places

Without all the complexity of MI forcing some variety of
inheritance on your code

Exercise Later standards for Java allows default methods to be
defined in interfaces, thus re-introducing the diamond problem.
Find out how Java addresses this



Object Oriented Languages
Multiple Inheritance

An interface like this is more like a list of requirements for a
class than about inheriting things

But interfaces provide all of the MI functionality that most
people need: they describe the required behaviour of a class,
taking from multiple places

Without all the complexity of MI forcing some variety of
inheritance on your code

Exercise Later standards for Java allows default methods to be
defined in interfaces, thus re-introducing the diamond problem.
Find out how Java addresses this



Object Oriented Languages
Class Composition

Some people say MI is too complex, hard to implement
properly, produces unexpected results, and can have
performance issues, so you should not have it or use it

They say if you want multiple behaviours, you can use SI with
class composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

Note class composition is completely different from method
composition!



Object Oriented Languages
Class Composition

Some people say MI is too complex, hard to implement
properly, produces unexpected results, and can have
performance issues, so you should not have it or use it

They say if you want multiple behaviours, you can use SI with
class composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

Note class composition is completely different from method
composition!



Object Oriented Languages
Class Composition

Some people say MI is too complex, hard to implement
properly, produces unexpected results, and can have
performance issues, so you should not have it or use it

They say if you want multiple behaviours, you can use SI with
class composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

Note class composition is completely different from method
composition!



Object Oriented Languages
Class Composition

Some people say MI is too complex, hard to implement
properly, produces unexpected results, and can have
performance issues, so you should not have it or use it

They say if you want multiple behaviours, you can use SI with
class composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

Note class composition is completely different from method
composition!



Object Oriented Languages
Class Composition

Some people say MI is too complex, hard to implement
properly, produces unexpected results, and can have
performance issues, so you should not have it or use it

They say if you want multiple behaviours, you can use SI with
class composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

Note class composition is completely different from method
composition!



Object Oriented Languages
Class Composition

class IOStream: public Istream, public Ostream { ... }

inheriting from Istream and Ostream becomes

class IOStream: { public: Istream i; Ostream o; ... }

containing Istream and Ostream

And we need to write str.i.ptr or str.o.ptr as appropriate
to get the stream pointers

This can be used by SI languages, too, such as Java



Object Oriented Languages
Class Composition

class IOStream: public Istream, public Ostream { ... }

inheriting from Istream and Ostream becomes

class IOStream: { public: Istream i; Ostream o; ... }

containing Istream and Ostream

And we need to write str.i.ptr or str.o.ptr as appropriate
to get the stream pointers

This can be used by SI languages, too, such as Java



Object Oriented Languages
Class Composition

class IOStream: public Istream, public Ostream { ... }

inheriting from Istream and Ostream becomes

class IOStream: { public: Istream i; Ostream o; ... }

containing Istream and Ostream

And we need to write str.i.ptr or str.o.ptr as appropriate
to get the stream pointers

This can be used by SI languages, too, such as Java



Object Oriented Languages
Class Composition

We lose the convenience of the compiler doing automatic
inheritance and automatic method selection, but many people
argue multiple inheritance is too problematic to use correctly
anyway

So class composition is much more like delegation and
prototyping OO

And we can combine behaviours arbitrarily, not being confined
to a hierarchy

And no diamond problem



Object Oriented Languages
Class Composition

We lose the convenience of the compiler doing automatic
inheritance and automatic method selection, but many people
argue multiple inheritance is too problematic to use correctly
anyway

So class composition is much more like delegation and
prototyping OO

And we can combine behaviours arbitrarily, not being confined
to a hierarchy

And no diamond problem



Object Oriented Languages
Class Composition

We lose the convenience of the compiler doing automatic
inheritance and automatic method selection, but many people
argue multiple inheritance is too problematic to use correctly
anyway

So class composition is much more like delegation and
prototyping OO

And we can combine behaviours arbitrarily, not being confined
to a hierarchy

And no diamond problem



Object Oriented Languages
Class Composition

We lose the convenience of the compiler doing automatic
inheritance and automatic method selection, but many people
argue multiple inheritance is too problematic to use correctly
anyway

So class composition is much more like delegation and
prototyping OO

And we can combine behaviours arbitrarily, not being confined
to a hierarchy

And no diamond problem



Object Oriented Languages
Class Composition

Many people say not to use MI as it has problems

But that doesn’t mean that all inheritance is problematic!

A lot of code successfully uses single inheritance

And a fair amount of code successfully uses MI!



Object Oriented Languages
Class Composition

Many people say not to use MI as it has problems

But that doesn’t mean that all inheritance is problematic!

A lot of code successfully uses single inheritance

And a fair amount of code successfully uses MI!



Object Oriented Languages
Class Composition

Many people say not to use MI as it has problems

But that doesn’t mean that all inheritance is problematic!

A lot of code successfully uses single inheritance

And a fair amount of code successfully uses MI!



Object Oriented Languages
Class Composition

Many people say not to use MI as it has problems

But that doesn’t mean that all inheritance is problematic!

A lot of code successfully uses single inheritance

And a fair amount of code successfully uses MI!



Object Oriented Languages
Class Composition

But, of course, some people go further and say you should not
even be using single inheritance, but should use class
composition for everything

A class inheritance hierarchy makes you share both structure
(slots) and behaviour (methods), and you always get both when
you inherit from a class

We don’t always want both: example shortly



Object Oriented Languages
Class Composition

But, of course, some people go further and say you should not
even be using single inheritance, but should use class
composition for everything

A class inheritance hierarchy makes you share both structure
(slots) and behaviour (methods), and you always get both when
you inherit from a class

We don’t always want both: example shortly



Object Oriented Languages
Class Composition

But, of course, some people go further and say you should not
even be using single inheritance, but should use class
composition for everything

A class inheritance hierarchy makes you share both structure
(slots) and behaviour (methods), and you always get both when
you inherit from a class

We don’t always want both: example shortly



Object Oriented Languages
Multiple Inheritance/Class Composition

Composition has several claimed downsides:

• Lack of code reuse: but composition is also a way of
avoiding code re-implementation, a kind of hand-crafted
inheritance. Code is written once and reused

• Runtime overheads: same as inheritance, which can mean
none if the compiler can statically determine which method
to call

• Initialising an instance harder: composition calls
(super)constructors, but so does inheritance



Object Oriented Languages
Multiple Inheritance/Class Composition

Composition has several claimed downsides:

• Lack of code reuse: but composition is also a way of
avoiding code re-implementation, a kind of hand-crafted
inheritance. Code is written once and reused

• Runtime overheads: same as inheritance, which can mean
none if the compiler can statically determine which method
to call

• Initialising an instance harder: composition calls
(super)constructors, but so does inheritance



Object Oriented Languages
Multiple Inheritance/Class Composition

Composition has several claimed downsides:

• Lack of code reuse: but composition is also a way of
avoiding code re-implementation, a kind of hand-crafted
inheritance. Code is written once and reused

• Runtime overheads: same as inheritance, which can mean
none if the compiler can statically determine which method
to call

• Initialising an instance harder: composition calls
(super)constructors, but so does inheritance



Object Oriented Languages
Multiple Inheritance/Class Composition

Composition has several claimed downsides:

• Lack of code reuse: but composition is also a way of
avoiding code re-implementation, a kind of hand-crafted
inheritance. Code is written once and reused

• Runtime overheads: same as inheritance, which can mean
none if the compiler can statically determine which method
to call

• Initialising an instance harder: composition calls
(super)constructors, but so does inheritance



Object Oriented Languages
Multiple Inheritance/Class Composition

• Method/slot lookup: done at coding time, by the
programmer, rather than by the compiler (recall
str.i.ptr or str.o.ptr above), only a problem if you
care about getting the right slot value

• Perhaps some lose a bit of encapsulation as “subclasses”
need to be accessible

• Always get multiple versions of a slot, so composition is
better with just behaviour (like traits/mixins!)

Of course, in contrast, inheritance can only adhere to the
existing hierarchy, composition is not restricted



Object Oriented Languages
Multiple Inheritance/Class Composition

• Method/slot lookup: done at coding time, by the
programmer, rather than by the compiler (recall
str.i.ptr or str.o.ptr above), only a problem if you
care about getting the right slot value

• Perhaps some lose a bit of encapsulation as “subclasses”
need to be accessible

• Always get multiple versions of a slot, so composition is
better with just behaviour (like traits/mixins!)

Of course, in contrast, inheritance can only adhere to the
existing hierarchy, composition is not restricted



Object Oriented Languages
Multiple Inheritance/Class Composition

• Method/slot lookup: done at coding time, by the
programmer, rather than by the compiler (recall
str.i.ptr or str.o.ptr above), only a problem if you
care about getting the right slot value

• Perhaps some lose a bit of encapsulation as “subclasses”
need to be accessible

• Always get multiple versions of a slot, so composition is
better with just behaviour (like traits/mixins!)

Of course, in contrast, inheritance can only adhere to the
existing hierarchy, composition is not restricted



Object Oriented Languages
Multiple Inheritance/Class Composition

• Method/slot lookup: done at coding time, by the
programmer, rather than by the compiler (recall
str.i.ptr or str.o.ptr above), only a problem if you
care about getting the right slot value

• Perhaps some lose a bit of encapsulation as “subclasses”
need to be accessible

• Always get multiple versions of a slot, so composition is
better with just behaviour (like traits/mixins!)

Of course, in contrast, inheritance can only adhere to the
existing hierarchy, composition is not restricted



Object Oriented Languages
Liskov

We know MI has problems with inheritance

But so does SI: the world is not arranged in a nice neat
hierarchy

Recall the Liskov substitution principle, a property we want from
OO and inheritance:

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

Here is an example where it goes wrong: or, rather, where
inheritance is not helpful



Object Oriented Languages
Liskov

We know MI has problems with inheritance

But so does SI: the world is not arranged in a nice neat
hierarchy

Recall the Liskov substitution principle, a property we want from
OO and inheritance:

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

Here is an example where it goes wrong: or, rather, where
inheritance is not helpful



Object Oriented Languages
Liskov

We know MI has problems with inheritance

But so does SI: the world is not arranged in a nice neat
hierarchy

Recall the Liskov substitution principle, a property we want from
OO and inheritance:

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

Here is an example where it goes wrong: or, rather, where
inheritance is not helpful



Object Oriented Languages
Liskov

We know MI has problems with inheritance

But so does SI: the world is not arranged in a nice neat
hierarchy

Recall the Liskov substitution principle, a property we want from
OO and inheritance:

Suppose S is a subtype of T. Then whenever we need
an instance of type T we can use an instance of type S,
and our code should still operate correctly

Here is an example where it goes wrong: or, rather, where
inheritance is not helpful



Object Oriented Languages
Circle-Ellipse

The circle-ellipse problem (also known as the square-rectangle
problem)

Is a circle an ellipse with special properties?

Or is an ellipse a circle with extra properties?

The way you might use inheritance depends on your point of
view



Object Oriented Languages
Circle-Ellipse

The circle-ellipse problem (also known as the square-rectangle
problem)

Is a circle an ellipse with special properties?

Or is an ellipse a circle with extra properties?

The way you might use inheritance depends on your point of
view



Object Oriented Languages
Circle-Ellipse

The circle-ellipse problem (also known as the square-rectangle
problem)

Is a circle an ellipse with special properties?

Or is an ellipse a circle with extra properties?

The way you might use inheritance depends on your point of
view



Object Oriented Languages
Circle-Ellipse

The circle-ellipse problem (also known as the square-rectangle
problem)

Is a circle an ellipse with special properties?

Or is an ellipse a circle with extra properties?

The way you might use inheritance depends on your point of
view



Object Oriented Languages
Circle-Ellipse

A circle is a special ellipse

Class ellipse {

double rx, ry;

ellipse(double x, double y) {... rx=x; ry=y...}

void scale_x(double s) { rx = rx*s; }

void scale_y(double s) { ry = ry*s; }

double area() { return Pi*rx*ry; }

}

// a special ellipse where radii are equal

Class circle extends ellipse {

circle(x: double) {... rx=x; ry=x; ...}

}



Object Oriented Languages
Circle-Ellipse

Circle inherits the scale x method: what should it do?

• Should it be overridden to scale ry as well to maintain the
constraint on the axes? Then scaling x by 2 unexpectedly
quadruples the area, not doubles

• Should the method be inapplicable — breaking Liskov?



Object Oriented Languages
Circle-Ellipse

Circle inherits the scale x method: what should it do?

• Should it be overridden to scale ry as well to maintain the
constraint on the axes? Then scaling x by 2 unexpectedly
quadruples the area, not doubles

• Should the method be inapplicable — breaking Liskov?



Object Oriented Languages
Circle-Ellipse

Just scaling x alone breaks the requirement that the two radii in
a circle are equal: a circle with different rx and ry

And note that ellipse(1.0,1.0) is actually of a different
class to circle(1.0)

Exceptionally, some languages (e.g., Common Lisp) can
change the class of an object: you can code things so that if
you scale an instance of circle it becomes an instance of
ellipse

But this is very rare: most languages don’t do this



Object Oriented Languages
Circle-Ellipse

Just scaling x alone breaks the requirement that the two radii in
a circle are equal: a circle with different rx and ry

And note that ellipse(1.0,1.0) is actually of a different
class to circle(1.0)

Exceptionally, some languages (e.g., Common Lisp) can
change the class of an object: you can code things so that if
you scale an instance of circle it becomes an instance of
ellipse

But this is very rare: most languages don’t do this



Object Oriented Languages
Circle-Ellipse

Just scaling x alone breaks the requirement that the two radii in
a circle are equal: a circle with different rx and ry

And note that ellipse(1.0,1.0) is actually of a different
class to circle(1.0)

Exceptionally, some languages (e.g., Common Lisp) can
change the class of an object: you can code things so that if
you scale an instance of circle it becomes an instance of
ellipse

But this is very rare: most languages don’t do this



Object Oriented Languages
Circle-Ellipse

Just scaling x alone breaks the requirement that the two radii in
a circle are equal: a circle with different rx and ry

And note that ellipse(1.0,1.0) is actually of a different
class to circle(1.0)

Exceptionally, some languages (e.g., Common Lisp) can
change the class of an object: you can code things so that if
you scale an instance of circle it becomes an instance of
ellipse

But this is very rare: most languages don’t do this



Object Oriented Languages
Circle-Ellipse

Alternatively, an ellipse a generalised circle

Class circle {

double radius;

circle(double x) {...r=x;...}

double area() { return pi*radius*radius; }

}

Class ellipse extends circle {

double radius2;

ellipse(double x, double y) {... radius=x; radius2=y ...}

scale_x(double s) { radius = radius*s; }

scale_y(double s) { radius2 = radius2*s; }

double area() { return pi*radius*radius2; }

}



Object Oriented Languages
Circle-Ellipse

This is not a natural use of inheritance, as ellipses don’t really
have a radius

radius doesn’t naturally correspond uniquely to one of rx or
ry

And we have to override all circle methods that depend on
the radius

Thus losing most of the benefit of inheritance



Object Oriented Languages
Circle-Ellipse

This is not a natural use of inheritance, as ellipses don’t really
have a radius

radius doesn’t naturally correspond uniquely to one of rx or
ry

And we have to override all circle methods that depend on
the radius

Thus losing most of the benefit of inheritance



Object Oriented Languages
Circle-Ellipse

This is not a natural use of inheritance, as ellipses don’t really
have a radius

radius doesn’t naturally correspond uniquely to one of rx or
ry

And we have to override all circle methods that depend on
the radius

Thus losing most of the benefit of inheritance



Object Oriented Languages
Circle-Ellipse

This is not a natural use of inheritance, as ellipses don’t really
have a radius

radius doesn’t naturally correspond uniquely to one of rx or
ry

And we have to override all circle methods that depend on
the radius

Thus losing most of the benefit of inheritance



Object Oriented Languages
Circle-Ellipse

Liskov asks: can we can we use an instance of the subclass
with every method for the superclass?

A circle is a special ellipse: possibly not, e.g., using scale x

An ellipse a generalised circle: maybe, if we override most
circle methods, so not really using inheritance



Object Oriented Languages
Circle-Ellipse

Liskov asks: can we can we use an instance of the subclass
with every method for the superclass?

A circle is a special ellipse: possibly not, e.g., using scale x

An ellipse a generalised circle: maybe, if we override most
circle methods, so not really using inheritance



Object Oriented Languages
Circle-Ellipse

Liskov asks: can we can we use an instance of the subclass
with every method for the superclass?

A circle is a special ellipse: possibly not, e.g., using scale x

An ellipse a generalised circle: maybe, if we override most
circle methods, so not really using inheritance



Object Oriented Languages
Circle-Ellipse

Even though we feel that circles and ellipses have some sort of
relationship, we can’t capture that well using inheritance

Alternatives include class composition: e.g., ellipse contains
circle

Though this isn’t much better than inheritance



Object Oriented Languages
Circle-Ellipse

Even though we feel that circles and ellipses have some sort of
relationship, we can’t capture that well using inheritance

Alternatives include class composition: e.g., ellipse contains
circle

Though this isn’t much better than inheritance



Object Oriented Languages
Circle-Ellipse

Even though we feel that circles and ellipses have some sort of
relationship, we can’t capture that well using inheritance

Alternatives include class composition: e.g., ellipse contains
circle

Though this isn’t much better than inheritance



Object Oriented Languages
Circle-Ellipse

We could use traits:

Class circle { double radius; }

Class ellipse { double rx, ry; }

trait Area { ... }

impl Area for circle { ... }

impl Area for ellipse { ... }

trait ScaleX { ... }

impl ScaleX for ellipse { ... }

// no ScaleX for circle

This works as traits separate behaviour from the classes, but
there is no code sharing going on here (maybe there can’t be
any sharing?)



Object Oriented Languages
Circle-Ellipse

Other “fixes”:

• Make all instances constant, thus not modifiable
• so scale x could return a new instance of ellipse or
circle when called on either circles or ellipses, but this
would require the implementer of ellipse to know the
class extension circle will also exist

ellipse scale x(double s)

{

if (s*rx == ry) { return circle(ry); }

else { return ellipse(s*rx,ry); }

}



Object Oriented Languages
Circle-Ellipse

Other “fixes”:

• Make all instances constant, thus not modifiable

• so scale x could return a new instance of ellipse or
circle when called on either circles or ellipses, but this
would require the implementer of ellipse to know the
class extension circle will also exist

ellipse scale x(double s)

{

if (s*rx == ry) { return circle(ry); }

else { return ellipse(s*rx,ry); }

}



Object Oriented Languages
Circle-Ellipse

Other “fixes”:

• Make all instances constant, thus not modifiable
• so scale x could return a new instance of ellipse or
circle when called on either circles or ellipses, but this
would require the implementer of ellipse to know the
class extension circle will also exist

ellipse scale x(double s)

{

if (s*rx == ry) { return circle(ry); }

else { return ellipse(s*rx,ry); }

}



Object Oriented Languages
Circle-Ellipse

Other “fixes”:

• Make all instances constant, thus not modifiable
• so scale x could return a new instance of ellipse or
circle when called on either circles or ellipses, but this
would require the implementer of ellipse to know the
class extension circle will also exist

ellipse scale x(double s)

{

if (s*rx == ry) { return circle(ry); }

else { return ellipse(s*rx,ry); }

}



Object Oriented Languages
Circle-Ellipse

• Only use ellipse: the common case of circles becomes
more noisy and error-prone to code for

• scale x is not applicable, or returns an error, or an
exception when called on a circle: breaking Liskov

• Change the hierarchy to have, say, RoundObject
containing the commonality and circle and ellipse
being sibling subclasses of RoundObject: but rewriting an
existing hierarchy is not always possible; and the
commonality might be less than you think

• Or just have no OO relationship between the two!



Object Oriented Languages
Circle-Ellipse

• Only use ellipse: the common case of circles becomes
more noisy and error-prone to code for

• scale x is not applicable, or returns an error, or an
exception when called on a circle: breaking Liskov

• Change the hierarchy to have, say, RoundObject
containing the commonality and circle and ellipse
being sibling subclasses of RoundObject: but rewriting an
existing hierarchy is not always possible; and the
commonality might be less than you think

• Or just have no OO relationship between the two!



Object Oriented Languages
Circle-Ellipse

• Only use ellipse: the common case of circles becomes
more noisy and error-prone to code for

• scale x is not applicable, or returns an error, or an
exception when called on a circle: breaking Liskov

• Change the hierarchy to have, say, RoundObject
containing the commonality and circle and ellipse
being sibling subclasses of RoundObject: but rewriting an
existing hierarchy is not always possible; and the
commonality might be less than you think

• Or just have no OO relationship between the two!



Object Oriented Languages
Circle-Ellipse

• Only use ellipse: the common case of circles becomes
more noisy and error-prone to code for

• scale x is not applicable, or returns an error, or an
exception when called on a circle: breaking Liskov

• Change the hierarchy to have, say, RoundObject
containing the commonality and circle and ellipse
being sibling subclasses of RoundObject: but rewriting an
existing hierarchy is not always possible; and the
commonality might be less than you think

• Or just have no OO relationship between the two!



Object Oriented Languages
Choose the Right Tool

We are at the point that inheritance is not helping us

We might end up making our code worse trying to squeeze it
into the OO paradigm

So OO is the wrong tool in such cases. Find a different
approach



Object Oriented Languages
Choose the Right Tool

We are at the point that inheritance is not helping us

We might end up making our code worse trying to squeeze it
into the OO paradigm

So OO is the wrong tool in such cases. Find a different
approach



Object Oriented Languages
Choose the Right Tool

We are at the point that inheritance is not helping us

We might end up making our code worse trying to squeeze it
into the OO paradigm

So OO is the wrong tool in such cases. Find a different
approach



Object Oriented Languages
Choose the Right Tool

Exercise For games programmers: read about the
entity-component-system (ECS) design pattern that favours
composition over inheritance, used for at least the last two
decades in games engines

Exercise React, the JavaScript platform for building UIs, is not
OO, but is reasonably functional in style. Read about it


