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With all these variants of OO, why should we be content with
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Just because a language designer has said this language
should have that kind of OO, should we be stuck with it?

A metaobject protocol (MOP) is a means by which we describe
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The metaobject protocol exposes the internal mechanisms of
how objects are structured, how objects are initialised, how
methods are chosen, how properties are inherited, whether we
have inheritance, and so on

Early experiments with MOPs in Simula were developed in
Smalltalk and led to CLOS: the Common Lisp Object System, a
fully reflective object system

Recall: reflective means a system can look at itself and maybe
even change itself

Exercise Look at type(), dir(), getattr(), etc., in Python
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And the best way to describe an OO system?

Using itself!

In CLOS (as in other MOP languages) there are

• classes that describe the structure and behaviour of
classes

• methods that describe how objects should be created and
initialised

• methods that describe how methods are looked up
• methods that describe how methods should be inherited or

overridden or combined
• and so on for all aspects of an OO system
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Exercise Think about the bootstrap problem of a MOP
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We shall take examples from Telos, the EuLisp Object System,
as it is much simpler than CLOS

There is a bunch of predefined classes and methods that
describe standard structure, standard inheritance, standard
method selection and so on

These implement the normal OO behaviour as you might
expect from other languages

In Telos, the class <simple-class> and its methods describe
these standard things

It is a subclass of the topmost (abstract) class <class>
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Previously we saw:

<object>

<number>

<integer><float>

<double−float> <fpi>

2.3 42

<class>

A Small Part of the EuLisp Class Hierarchy (simplified)

Dotted arrow is instance of /member of /is a; solid arrow is
inherits from/subclass/extends/subset
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<object>

<number>

<integer><float>

<double−float> <fpi>

2.3 42

<simple−class>

<class>

<method>

<simple−method>

<slot>

<local−slot>

a method a slot

A Small Part of the EuLisp Class Hierarchy (not so simplified)

Dotted arrow is instance of or member of or is a; solid arrow is
inherits from or subclass or extends
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If we want different behaviours we can create new classes that
implement those behaviours

Classes are instances of subclasses of the class <class>

Thus the class <string> is an instance of <simple-class>

And so strings and their methods have the “usual” behaviours,
inherited from <simple-class>

To define new behaviours we can create a new subclass of the
class <class> (or <simple-class>)
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Methods: how do we find the right method to apply?

We need to find the class precedence list for an argument

So Telos provides a generic function
compute-class-precedence-list

There is a predefined method on this for <simple-class> that
does the standard thing with CPLs, as described previously

You can add a method yourself for your new class if you want to
something different, e.g., reverse the order, or omit some
classes, or add some strange kind of multiple inheritance, etc.
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We need to take the CPL and choose a method (or methods)
from it

The generic function compute-method-lookup-function is
used for this

The standard method returns a function that simply picks the
first on the list

Method combination can be implemented by specialising
compute-method-lookup-function

And so on
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Structure: how are values to be stored in an object?

Most objects are implemented as structures with the object
accessors implemented as simple structure references

The generic function compute-and-ensure-slot-accessors
describes how slots are accessed

The standard method does a simple structure access

So if you want slots that live on disk rather than in memory, or
count the number of times they are accessed, add a method
here
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There are standard, predefined, methods everywhere, of
course, that do the “usual” things, i.e., they implement the
behaviour you would expect from a normal OO language

For example, a method on initialize that fills in a newly
allocated object

But if you want to change how that happens, you can
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Exercise Investigate the Metaobject class in Java

Exercise Investigate the metaobject system in Python

Exercise Investigate Joose, the JavaScript metaobject system

Exercise Investigate Moose, the Perl metaobject system
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A note on efficiency of OO

You might think, with all this complexity, that OO languages
must be very inefficient, and produce code that runs only very
slowly

The good thing is that with careful design of the language and
good compilers an OO language need not be any less efficient
than, say, a procedural language

For example, Rust and C++ are pretty much as efficient as C
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This is because many of the complex OO mechanisms (method
lookup, attribute lookup, etc.) have the potential of being
statically done at compile time, so a method call can be as
efficient as a function call

Perhaps the compiler is slower, but the generated code should
not be

Dynamic languages can have a fair amount of runtime
overhead, though

Of course, it’s easy to design and implement an OO language
poorly, just as any other feature, but there are few intrinsic
reasons why OO should be slow



Object Oriented Languages
End of OO

This is because many of the complex OO mechanisms (method
lookup, attribute lookup, etc.) have the potential of being
statically done at compile time, so a method call can be as
efficient as a function call

Perhaps the compiler is slower, but the generated code should
not be

Dynamic languages can have a fair amount of runtime
overhead, though

Of course, it’s easy to design and implement an OO language
poorly, just as any other feature, but there are few intrinsic
reasons why OO should be slow



Object Oriented Languages
End of OO

This is because many of the complex OO mechanisms (method
lookup, attribute lookup, etc.) have the potential of being
statically done at compile time, so a method call can be as
efficient as a function call

Perhaps the compiler is slower, but the generated code should
not be

Dynamic languages can have a fair amount of runtime
overhead, though

Of course, it’s easy to design and implement an OO language
poorly, just as any other feature, but there are few intrinsic
reasons why OO should be slow



Object Oriented Languages
End of OO

This is because many of the complex OO mechanisms (method
lookup, attribute lookup, etc.) have the potential of being
statically done at compile time, so a method call can be as
efficient as a function call

Perhaps the compiler is slower, but the generated code should
not be

Dynamic languages can have a fair amount of runtime
overhead, though

Of course, it’s easy to design and implement an OO language
poorly, just as any other feature, but there are few intrinsic
reasons why OO should be slow



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

Including choosing not to use OO



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

Including choosing not to use OO



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

Including choosing not to use OO



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

Including choosing not to use OO



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

Including choosing not to use OO



Object Oriented Languages
End of OO

C++ is history repeated as tragedy. Java is history re-
peated as farce
Scott McKay

Object-oriented programming is an exceptionally bad
idea which could only have originated in California
Edsger Dijkstra

Object oriented programs are offered as alternatives to
correct ones
Edsger Dijkstra
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There are many languages out there, both general purpose and
specialist

We have briefly covered many aspects of language design

And there are many more factors we could talk about in making
choices of language



The End

There are many languages out there, both general purpose and
specialist

We have briefly covered many aspects of language design

And there are many more factors we could talk about in making
choices of language



The End

There are many languages out there, both general purpose and
specialist

We have briefly covered many aspects of language design

And there are many more factors we could talk about in making
choices of language



The End

Or languages

Often a single project can use several languages, each suited
to its part of the project

For example, using Python to manage a computation in C,
while using Java to display the results graphically

And then the interoperability of languages becomes important

For example, can you easily join together code written in Java
and C?

Or Java and Python?
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How does the managed (GC) nature of Java interact with the
manual memory allocation in C? Or the GC in Java with the
different GC in Python?

Do types in the languages match? An integer in Python is
represented in a different way to an integer in Java or C

Sometimes integers and floating point numbers are represented
in the same way, but what of Java’s objects and C’s structs?

Some languages specify a foreign function interface (FFI) that
describes how to write code that interoperates with another
language

Quite often a FFI to C, as C is very widely supported and used
and is a “lowest common denominator” of languages
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Interopability is important in any moderately sized project and
will affect which languages you may choose to use

But it is important to remember the non-functional issues, too

What is the programming environment? E.g., quality compilers,
IDEs, debuggers

What languages are you familiar with and happy programming
in?
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And there are the more niche considerations, e.g., energy
usage can be very important in certain situations, for example
mobile phones, or when you are thinking about green
computing

How much energy does the final program take to run?

If your program is going to run very many times, or you need to
worry about battery life, then this measure is important

We touched on this briefly when talking about bytecoding with
JIT and AOT and other execution approaches

Experiments show that C programs generally take the least
energy to run
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The Top 10 performers:

C 1.00
Rust 1.03
C++ 1.34
Ada 1.70
Java 1.98
Pascal 2.14
Chapel 2.18
Lisp 2.27
Ocaml 2.40
Fortran 2.52

Relative energy uses of programs written in various languages

Python is number 26 at 75.88
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Exercise Read “Energy Efficiency across Programming
Languages: How Do Energy, Time, and Memory Relate?” by
Pereira et. al., SLE 2017: Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language
Engineering, October 2017, pp. 256-267,
https://doi.org/10.1145/3136014.3136031

https://doi.org/10.1145/3136014.3136031
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Do you need support for modern character sets (different
languages, emoji)?

Support for Unicode is patchy in some languages, good in
others

And some languages (and operating) systems use different
encodings for the characters

For example, The Web mostly uses UTF-8 encodings, whereas
SMS text messages use UTF-16 and Java, JavaScript and
Windows are stuck using UTF-16 internally

Rust, Go and Python use UTF-8
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Exercise What does C do?

Exercise Find out what your favourite languages do
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Next, what is the support for writing documentation?

Tools like Sphinx for Python, Doxygen for C++, Godoc for Go,
Rustdoc for Rust and so on

Exercise Read about “Literate programming” by Knuth

Hint Whenever you fix a bug in your code, put a comment on it!
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// set c to 0

c = 0;

// initialize the object count

c = 0;

And which of the above two kinds of comment appears most in
student code?
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Picking the right language(s) can be complicated: but it will
repay you well to think carefully about this
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Remember:

• Not all OO languages have classes
• Not all OO languages have polymorphism
• Not all class-based languages have inheritance
• OO languages are not necessarily slow or fast
• OO languages are not necessarily easy or hard to use
• Procedural languages are not necessarily slow or fast
• Procedural languages are not necessarily easy or hard to

use
• Functional languages are not necessarily slow or fast
• Functional languages are not necessarily easy or hard to

use
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• Not all bytecode compilers are fast
• Not all bytecode compilers are slow
• Not all native compilers are fast
• Not all native compilers are slow
• Not all VMs are large
• Not all VMs are compact
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Exercise Find examples of languages that confirm each of
these statements (e.g., original JavaScript did not have classes)
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Exercise Consider:

• procedural, OO, etc.: flow of execution is determined by
the code

• data driven: flow is determined by the data
• declarative: flow is determined by the system
• event: flow is determined by the events



The End

If anyone tells you that one language is better than another, you
will know you are a better programmer than they are

It’s not a case that one language is better than another, more
that one is better for the problem in hand

Be aware and learn the concepts, they are transferable
between many languages

Pick the right tool for the job
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Exercise Add more languages to this chart:

Programming good and bad, hard or easy
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Exercise For as many languages as you can, classify them as

general purpose; specific purpose; procedural; logic; declarative;
imperative; functional; macro; scripting; event driven; simulation;
dataflow; markup; parallel; GC; manual memory management; other
memory management; typed; untyped; strongly typed; weakly typed;
statically typed; dynamically typed; manifest typed; implicit typed;
polymorphic typed; has overloading; has higher kinded or rank types;
has dependent types; constant variables; call by value; call by
reference; call by name; call by need; interpreted; compiled; byte
compiled; managed code or data; unmanaged code or data;
expression based; statement based; error handing support; object
oriented; class centred OO; object centred OO; single inheritance;
multiple inheritance; traits/mixins/interfaces; object receiver; generic
functions; single dispatch; multiple dispatch; prototyping; delegation;
has metaobjects; has a good development environment; has a good
debugger; is easy to learn
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There are only two kinds of languages: the ones peo-
ple complain about and the ones nobody uses

Bjarne Stroustrup, creator of C++

There are only two kinds of C++: the language subsets
that Stroustrup insists that people should use, and the
subsets that people actually use

Anon



(Source unknown)
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How to shoot yourself in the foot while programming:

Pick the wrong tools
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